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Preface

It is without doubt that we live in an interconnected world where we are always
within reach of smartphone, tablet or telephone system and through which we
are always communicating with friends and family, colleagues and workmates or
an automated voicemail or interactive dialog system. Otherwise we just relax and
switch on the radio, stream some music or watch a movie. These activities are part of
our everyday lives. They have been made possible through the advances in speech
and audio processing and recognition technologies which only in the last decade
have seen an explosion in usage through a bewildering array of devices and their
capabilities.

Speech coding refers to the digital representation of the information-bearing
analog speech signal, with emphasis on removing the inherent redundancies.
Efficient coding of speech waveforms is essential in a variety of transmission and
storage applications such as traditional telephony, wireless communications (e.g.,
mobile phones), internet telephony, voice-over-internet protocol (VoIP) and voice
mail. Many of these applications are currently going through an impressive growth
phase.

Speech recognition encompasses a range of diverse technologies from engineer-
ing, signal processing, mathematical statistical modelling and computer science
language processing necessary to achieve the goal of human–computer interaction
using our most natural form of communication: speech. Applications of speech
recognition have exploded due to the advent of smartphone technology where the
use of the traditional keyboard and mouse has given way to touch and speech
and in enterprise automated computer voice response services for enquiries and
transactions. We are now experiencing an exponential growth in the adoption
of speech recognition in smartphone and mobile technology, in information and
transaction services and increased R&D effort on efficient low-cost and low-power
implementations, robustness in the presence of ambient noise and reliable language
understanding and dialog management.

v



vi Preface

In this book we provide readers with an overview of the basic principles and
latest advances across a wide variety of speech and audio areas and technologies
across ten chapters. These are organized into three parts from front end signal
processing involved with speech coding and transmission and the more sophisticated
approaches deployed for speech enhancement to the back end user interface
involved with speech recognition to the latest “hot” research areas in emotion recog-
nition and speaker diarization. This book brings together internationally recognized
researchers across these diverse fields spanning many countries including the USA,
Australia, Singapore and Japan from leading research universities, industry experts
from Microsoft and Qualcomm and front line research institutions like Microsoft
Research, USA, Institute for Infocomm Research, Singapore and NTT Labs, Japan.

We have divided the book into three parts: “Overview of Speech and Audio
Coding”, “Review and Challenges in Speech, Speaker and Emotion Recognition”
and “Current Trends in Speech Enhancement”.

Part I comprises four chapters.
The first chapter traces a historical account of speech coding from a front-row

seat participant and is titled “From ‘Harmonic Telegraph’ to Cellular Phones”. The
second chapter gives an introduction to speech and audio coding, emerging topics
and some challenges in speech coding research. In the third chapter, we present
scalable and multirate speech coding for Voice-over-Internet Protocols (VoIP)
networks. We also discuss packet-loss robust speech coding. The fourth chapter
details the recent speech coding standards and technologies. Recent developments
in conversational speech coding technologies, important new algorithmic advances,
and recent standardization activities in ITU-T, 3GPP, 3GPP2, MPEG and IETF that
offer a significantly improved user experience during voice calls on existing and
future communication systems are presented. The Enhanced Voice Services (EVS)
project in 3GPP that is developing the next generation speech coder in 3GPP is also
presented.

Part II includes four chapters which cover the depth and breadth of speech
and audio interfacing technologies. The part starts with two overview chapters
presenting the latest advances and thoughts in statistical estimation and machine
learning approaches to feature modelling for speech recognition, specifically ensem-
ble learning approaches and dynamic and deep neural networks. This is followed by
two chapters representing new and emerging research and technology areas which
extend speaker recognition to: how speech can be used to detect and recognize the
emotional state of a speaker instead, to the deployment in the real world task of
speaker diarization in room conversations, that is who spoke when.

Part III presents two different alternative paradigms to the task of speech
enhancement. Assuming the availability of multiple microphone arrays the first
chapter in this part deals with speech enhancement in the widest sense where
speech is degraded by interfering speakers, ambient noise and reverberations and
provides a framework which integrates both spatial and spectral features for a
blind source separation and speech enhancement solution. The second and final
chapter in this part presents a more fundamental approach for signal channel speech
enhancement in the presence of ambient additive noise based on the modulation
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spectrum approach for differentiating and separating time-frequency speech features
from the additive interfering noise features.

The convergence of technologies as exemplified by smartphone devices is a key
driver of speech and audio processing. From the initial speech coding and transmis-
sion to the enhancement of the speech and the final recognition and modelling of
the speech we have in our hands that smart phone device that can capture, transmit,
store, enhance and recognize what we want to say. This book provides a unique
collection of timely works representing the range of these processing technologies
and the underlying research and should provide an invaluable reference and a source
of inspiration for both researchers and developers working in this exciting area.

We thank all the chapter contributors which includes Bishnu Atal, Jerry Gibson,
Koji Seto, Daniel Snider, Imre Varga, Venkatesh Krishnan, Vivek Rajendran,
Stephane Villette, Yunxin Zhao, Jian Xue, Xin Chen, Li Deng, Vidhyasaharan
Sethu, Julien Epps, Eliathamby Ambikairajah, Trung Hieu Nguyen, Eng Siong
Chng, Haizhou Li, Yasuaki Iwata, Tomohiro Nakatani, Takuya Yoshioka, Masakiyo
Fujimoto, Hirofumi Saito, Kuldip Paliwal and Belinda Schwerin for their work.

We thank Springer Publishers for their professionalism and for support in the
process of publishing the book. We especially thank Chuck Glasser and Jessica
Lauffer.

We hope the material presented here will educate new comers to the field and also
help elucidate to practicing engineers and researchers the important principles of
speech/audio coding, speech recognition and speech enhancement with applications
in many devices and applications such as wireless communications (e.g., mobile
phones), voice-over-IP, internet telephony, video comm., text-to-speech, etc. which
are ubiquitous today.

Santa Clara, CA, USA Tokunbo Ogunfunmi
Crawley, WA, Australia Roberto Togneri
Santa Clara, CA, USA Madihally (Sim) Narasimha
June 2014
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Part I
Overview of Speech and Audio Coding



Chapter 1
From “Harmonic Telegraph” to Cellular Phones

Bishnu S. Atal

Leave the beaten track occasionally and dive into the woods. Every time you do so you
will be certain to find something that you have never seen before. Follow it up, explore all
around it, and before you know it, you will have something worth thinking about to occupy
your mind. All really big discoveries are the results of thought.

(Alexander Graham Bell)

Abstract It all started with two patents issued to Alexander Graham Bell in
March 1876 and the world changed forever. Vast distances began to shrink. Soon,
nobody was isolated. The invention produced a new industrial giant whose research
laboratories supported the best in scientific research and engineering leading to
major technical advances of the twentieth century. The desire for communication,
anytime, anywhere spread fast; stationary phones connected by wires started fading
away, replaced by mobile phones or “cellular phones” reflecting the cell structure
of the wireless medium. The book chapter will provide a history of the telephones,
starting from Alexander Graham Bell’s “harmonic telegraph” in 1876 to modern
cellular phones.

1.1 Introduction

In the middle of the nineteenth century, before the invention of the telephone, the
telegraph was the primary form of long distance communication. The telegraph was
the fastest and reliable way to transmit information, but was limited to sending
or receiving one message at a time. The telegraph message traffic was rapidly
expanding and Western Union, which ran the telegraph business, was trying to
find a way to send multiple messages on each telegraph line to avoid the cost
of constructing new lines. Copper for wires was a major expense then for the
telegraph company and sending multiple messages on a single telegraph line was
an immediate and pressing need.

B.S. Atal (�)
University of Washington, Seattle, WA, USA
e-mail: bsatal@bishnu.net

© Springer ScienceCBusiness Media New York 2015
T. Ogunfunmi et al. (eds.), Speech and Audio Processing for Coding,
Enhancement and Recognition, DOI 10.1007/978-1-4939-1456-2__1
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4 B.S. Atal

1.1.1 The Multiple Telegraph “Harmonic Telegraph”

Because the need was so obvious, a number of inventors were busy. Thomas Edison
began designing devices for multiple (duplex and quadruplex) telegraphy in 1865
and he had the technical background due to his experience as a telegraph operator
[1]. Due to his training in electrical signals, Edison was trying to solve the problem
by manipulating the electrical current.

In 1873, Alexander Graham Bell, who was professor of Vocal Physiology at the
Boston University, and taught deaf students to speak, began experimenting with
a device, which could send several telegraph signals simultaneously over a single
wire. He knew that others had transmitted musical tones over a wire by using
the intermittent (dot & dashes) current of telegraphy. He thought of sending more
than one tone over the same wire simultaneously and then separate the tones at
the receiving end. He called his version of the multiple telegraph the “harmonic
telegraph”.

With many years of scientific training, Bell had gained an extraordinary under-
standing of the way sounds of speech are created and heard. He carried out a series of
experiments to determine how different vowel sounds are produced. He concluded
that every vowel sound is a combination of resonances from different cavities of the
mouth.

For several years Bell continued to develop a functioning harmonic telegraph.
He used to do his experimenting on harmonic telegraph at night, as he was busy
during the day at the Boston University. Although Bell was a teacher by profession,
he was thinking seriously about the commercial side of his work. In 1875, Bell
together with Gardiner Hubbard (a lawyer), and George Sanders (businessman)
established the “Bell Patent Association”. Bell hired Thomas Watson to assist him
in his research. Watson was an experienced machinist and would help towards the
development of the harmonic telegraph. Both Bell and Watson lived in two cheap
little bedrooms. Watson’s wages of nine dollars a week were being paid by Sanders
and Hubbard.

1.1.2 Bell’s Theory of Transmitting Speech

Bell explored the possibility of “telegraphing” speech, though he then had no idea
how to go about doing it. One evening Bell said to Thomas Watson: “Watson, I want
to tell you of another idea 1 have, which I think will surprise you. If I could make
a current of electricity vary in intensity, precisely as the air varies in density during
the production of sound, I should be able to transmit speech telegraphically.” But
Bell’s partners, Hubbard and Sanders, were insisting that the wisest thing for Bell
to do was to perfect the harmonic telegraph then he would have money to build air
castles like “telephone”.
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1.2 Early History of the Telephone

1.2.1 The Telephone Is Born

It was through his experiments with the harmonic telegraph, plus his knowledge
of music and human speech and hearing, that Bell found the way to the telephone.
Bell and Watson continued their work. A great breakthrough came in 1875. It was
actually an “accident”. While testing the harmonic telegraph device between two
rooms in the electrical shop, Bell heard a faint but distinct sound. There are a number
of accounts as to exactly what happened on that memorable day of June 2, 1875, but
Watson’s own words tell the story dramatically [2]. Bell’s great success marked not
only the birth of the telephone but the death of the harmonic telegraph as well.

Alexander Graham Bell filed several patent applications for his work on har-
monic telegraph; the most important was the US patent 174,465, filed February 14,
1876 and issued on March 7. The patent was titled “Improvements in Telegraphy”
and described new and useful improvements in telegraphy for transmitting vocal or
other sounds telegraphically by causing electrical undulations, similar in form to
the vibrations of the air accompanying the vocal or other sounds. The key point to
Bell’s application, the principle of variable resistance, was scribbled in a margin
on the rough draft, almost as an afterthought. Some 600 lawsuits would eventually
challenge the patent.

Bell’s telephone “the speaking telegraph” was not universally welcomed. Some
people dismissed it as a scientific toy of little value. By the fall of 1876, Bell and
Hubbard offered to sell the telephone patent rights to Western Union Telegraph
Company for $100,000. Western Union said no. Western Union believed that the
telegraph, not the telephone, was the future. Only a few months later, Western Union
realized what an unwise decision they had made. The telephone began to make
its way into society, catching the public imagination as people preferred two-way
conversations over the telephone.

1.2.2 Birth of the Telephone Company

The telephone business was formally organized and on July 9, 1877, The Bell
Telephone Company was formed. In December 1877, Western Union created the
American Speaking Telephone Company, to conduct its telephone business; Thomas
Alva Edison started working for this company. Western Union was a giant then. Bell
Telephone had installed only 3,000 phones by then. Western Union, on the other
hand, had 250,000 miles of telegraph wire strung over 100,000 miles of route. On
November 10, 1879 Bell won its patent infringement suit against Western Union in
the United States Supreme Court. The American Telephone and Telegraph Company
(AT&T) was established in 1885.
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By the end of 1892 there were nearly 240,000 telephones in use in the United
States. Bell’s patents expired in 1893 and 1894. During the 6 years following
the patents’ expiration more than 6,000 telephone companies were inaugurated
in the United States. AT&T started new efforts based on scientific research and
development with emphasis on basic science to fight a battle for its survival.

1.2.2.1 Research at Bell Company

Scientific research at Bell Telephone Company started in 1885 when Hammond V.
Hayes joined the company. Hayes, a graduate of Harvard, had studied electrical
engineering at MIT in Cambridge, MA and was one of the Harvard’s earliest Ph.D
in physics. The technical staff at the telephone company consisted of 81 employees
on December 31, 1885 and it grew to 195 employees in January 1905, under
the leadership of Dr. Hayes. This was the first formal organization of research
leading to Bell Telephone Laboratories. Hayes was quick to sense the technical
complexity of telephony and to realize that its scientific roots must extend into
deeper soil. Early workers involved with the development of telephones had to rely
on intuition, ingenuity, and experiment. However, by 1900, a theoretical basis for
electrical communication started emerging from the scientific research, both within
and outside of the Bell Company.

It is highly unusual for a company to describe its research organization in
the annual report to its stockholders. In its 1913 report, the president of AT&T,
Theodre N. Vail, made several interesting points. I provide here a summary.

At the beginning of the telephone industry there was no school or university
conferring the degree of electrical engineer. AT&T called some of the most
distinguished professors of science at many universities to its aid. As problems
became more formidable and increased in number and complexity, the engineering
and scientific staff was increased in size and in its specialization, so that we
now have 550 engineers and scientists. Among them are former professors and
instructors of our universities, postgraduate students and other graduates holding
various engineering and scientific degrees from 70 different scientific schools and
universities, 60 American and 10 foreign institutions of learning being represented.
No other telephone company, no government telephone administration in the world,
has a staff and scientific equipment such as this. It can be said that this company
has created the entire art of telephony and that almost without exception none of
the important contributions to the art have been made by any government, telephone
administration or by any other telephone company either in this country or abroad.

1.2.2.2 New York to San Francisco Telephone Service in 1915,
Nobel Prize, and More

The Bell Company had a policy of hiring the best students of the best profes-
sors at the best universities for its research organization. One such person was
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Harold D. Arnold, a student of Prof. Robert Millikan of University of Chicago,
who recommended him “as one of the ablest man whose research work I have ever
directed and had in classes.” The telephone network was expanding from New York
and Boston towards Chicago and Denver in the west, but with wire thick as rods and
with all sort of technological innovations, it was still not possible to hear anything in
Denver. Within a few years after his arrival at Bell, Arnold developed a high-vacuum
tube amplifier that made it possible to introduce commercial telephone service from
New York to San Francisco by 1915.

The talented scientists at Bell continued to advance science and engineering.
Another development was the negative feedback amplifier invented by Harold Black
in 1927, an invention now regarded as one of the most important discovery. In 1937,
Dr. Clinton Davisson became the first Bell Labs person to win the Nobel Prize for
his experimental discovery of the wave nature of electrons.

1.3 Speech Bandwidth Compression at AT&T

1.3.1 Early Research on “vocoders”

AT&T’s interest in speech bandwidth compression began around 1925 when the
company explored the possibility of establishing telephone connection between
New York and London. There was a radio–telephone service then operating across
Atlantic. The company asked research engineers at Bell Telephone Laboratories
if voice signals could be transmitted over existing undersea telegraph cables.
The bandwidth required for voice transmission was approximately ten times the
bandwidth that was available on the transatlantic telegraph cable. In October 1928,
Homer Dudley, an electrical engineer at Bell Laboratories, proposed a device called
“vocoder” (voice coder) to compress speech [3]. Ideas behind vocoders remained
the central theme of speech coding research for about 35 years [4].

In an excellent review of vocoder research published in 1990, Ben Gold explained
Dudley’s idea [5]. “To understand Dudley’s concept of more telephone channels in
the same frequency space, it is important to realize that human speech production
depends on relatively slow changes in the vocal-tract articulators such as the tongue
and the lips. Thus, if we could develop accurate models of the articulators and
estimate the parameters of their motion, we could create an analysis-synthesis
system that has a low data rate. Dudley managed to bypass the difficult task of
modeling the individual articulators by realizing that he could lump all articulator
motion into one time-varying spectral envelope.”

Vocoders promised a many-fold reduction of the bandwidth necessary to transmit
intelligible speech, but the speech from vocoders was of poor quality unsuitable for
commercial use. Why was it so? Manfred Schroeder reviewing the status of speech
coding at a talk in 1959 at the Third International Congress of Acoustics in Stuttgart
provided the answer [6]. “The answer can be given in two sentences: (1) our ears are
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highly discriminating organs, particularly sensitive to the quality of human speech,
and (2) no vocoder is capable of reproducing these important quality characteristics
in a manner acceptable to the ear”. By the time I joined Bell Telephone Laboratories
in 1961, the research in speech coding had been discontinued at Bell Labs.

1.3.2 Predictive Coding

In 1965, as part of my Ph.D. course work at Polytechnic Institute of Brooklyn,
New York, I took a seminar course on Information Theory, taught by Prof. Mischa
Schwartz. We discussed in the course several interesting papers. One of the papers
was on predictive coding written by Prof. Peter Elias at MIT. In fact, there were
two papers, Predictive coding: I and II, published in the IRE Trans. Information
Theory, 1955 [7, 8]. In these papers, Elias mentioned two major contributions that
have been made within the past few years. One is Wiener’s work on prediction [9]
and the other is Shannon’s work on the mathematical theory of communication [10].
I provide here a summary of the abstracts of the two papers [7, 8].

Predictive coding is a procedure for transmitting messages which are sequences of
magnitudes. In this coding method, the transmitter and the receiver store past message
terms, and from them estimate the value of the next message term. The transmitter transmits,
not the message term, but the difference between it and its predicted value. At the receiver
this error term is added to the receiver prediction to reproduce the message term. The error
terms which are transmitted in predictive coding are treated as if they were statistically
independent. If this is indeed the case, or a good approximation, then it is still necessary to
show that sequences of message terms which are statistically independent may always be
coded efficiently. This is shown in the final section of the second paper.

I found the concept of predictive coding extremely interesting. In discussions
with researchers in the speech coding area, I got the impression that such techniques
were not applicable for speech coding. In 1966, I started working on my Ph.D.
thesis on automatic speaker recognition and I was reluctant to start a side project
on speech compression. However, I felt that I should do exploratory investigation
to determine if predictive coding could work for speech signals. A first step was
to find out if successive samples of prediction error for speech were uncorrelated.
I analyzed several segments of voiced speech, band-limited to 3.2 kHz and sampled
at 6.67 kHz, using linear prediction with number of predictor coefficients ranging
from 2 to 128. The duration of each speech segment was set to 40 ms and
linear prediction analysis was carried out using Wiener’s formula. The results are
illustrated in Fig. 1.1 which shows the spectrum of speech and the prediction error
with p D 16 and p D 128, where p is the number of predictor coefficients. The
spectrum of the prediction error at p D 128 is nearly white, except at very low
frequencies. The results were encouraging, but the important question was whether
the prediction error can be encoded at a low bit rate. That is the problem discussed
by Peter Elias in his second paper. Manfred Schroeder and I spent next 15 years to
find a solution to this problem.
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Fig. 1.1 The figure shows spectrum of the speech signal and the corresponding spectra of the
prediction error after linear prediction with 16 and 128 coefficients. The speech signal was sampled
at 6.67 kHz

1.3.3 Efficient Encoding of Prediction Error

1.3.3.1 Some Comments on the Nature of Prediction Error for Speech

The prediction error is the difference between a speech sample and its predicted
value. For linear prediction, the predictor P is a linear filter and the filter 1 � P is
also a linear filter. The spectrum corresponding to the filter 1 � P is approximately
the inverse of the spectrum of the speech signal. The spectrum of the speech signal
as a function of frequency varies over a large range, approximately 40 dB (104 in
power). For voiced speech, the spectrum has large values near the “formants” and
near the “harmonics”, but small values in between the formants and the harmonics
(see the first plot of Fig. 1.1). Therefore, the spectrum of 1 � P will be small near
the formants and the harmonics, but will be very large in between and will be
determined by the low-amplitude portions of the speech spectrum. The prediction
error will therefore will have considerable noise in these frequency regions. Since
formants and harmonics occur in narrow frequency regions and the regions outside
formants and harmonics are large, the prediction error is mostly filled with noise.
The situation is analogous to what one finds in inverting a matrix which has a
few large eigenvalues but a large number of very small eigenvalues. The resulting
matrix after inversion will have a large number of very large eigenvalues which are
influenced by very small eigenvalues in the original matrix. The problems created
by the ill-conditioned nature of prediction error can be dealt with by developing a
proper fidelity criterion.
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1.3.3.2 Information Rate of Gaussian Signals with Specified
Fidelity Criterion

Shannon considered the problem of quantizing “white” Gaussian signal under a
mean-squared error criterion in his original 1948 paper [10] and followed up
in another paper [11] published in 1949, where he introduced the concept of a
rate distortion function. In a paper published in 1964, MacDonald and Shultheiss
developed this concept further obtaining results for the case where not only the
total mean-squared error but also the spectral properties of the signal was taken into
account [12, 13]. The results described in these papers are directly applicable to the
prediction error problem.

The rate–distortion viewpoint requires a model for the signal and a fidelity
criterion for the error. Let us review briefly some of the results for the rate–distortion
function for “white” Gaussian signal with a mean-squared-error distortion measure
D [11]. For a Gaussian signal with zero mean and a variance (power) ¢2, the rate
distortion function (in bit/sample) is given by

R.D/ D max

�
0;

1

2
log2

�
¢2=D

� �
:

The intuitive meaning of this equation is that, for a distortion D � ¢2, we need not
send any information (R D 0), because we can replace the source output by zeros
(and incur an error ¢2 which does not exceed the distortion D). This result can be
generalized to the case when the spectrum of either the signal or the noise (or both
the signal and the noise) is nonwhite [12]. We will skip the details here. The main
idea is to apply the above result to each frequency component or to each sub-band
of the signal. The result is that for those frequency bands, where the signal spectrum
is below the noise spectrum no information needs to be transmitted to the receiver.

1.3.3.3 Predictive Coding with Specified Error Spectrum

In any speech coding system that adds noise to the speech signal, it is not sufficient
to reduce the noise power; the goal is to minimize subjective loudness of the
noise [14]. The subjective loudness of the noise is determined not just by its total
power but also by the distribution of the noise and signal powers along the basilar
membrane [15, 16].

The problem of encoding a source (original speech) with spectrum S(f ) and
with error spectrum E(f ) is equivalent to the problem of coding a source “modified
speech” with spectrum E(f )/S(f ) and a flat error spectrum [17]. The modified speech
signal yn is obtained by filtering the original speech signal through a filter with a
magnitude-squared transfer function 1/E(f ).
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Fig. 1.2 Block diagram of a coder for a spectrally modified speech signal with white quantizing
noise

The sequence of steps one might undertake to encode yn is illustrated in Fig. 1.2.
In the figure, A(z) is the linear predictor for yn and ¢2 is the mean-squared prediction
error.

The code generator is assumed to be capable of generating all allowable codes
from a zero-mean unit-variance white Gaussian process. A particular code is
selected by a specified search procedure and the resulting sequence is scaled by
a constant factor ¢ and filtered by two cascaded linear filters with transfer functions
C(z) and [l � A(z)]�1, respectively. The filtered output is compared with the signal
yn to yield the error en. The optimal sequence is the one which minimizes the mean-
squared error. Its “path map” is transmitted to the receiver, where the same sequence
can be regenerated. The magnitude-squared transfer function of the filter C(z) is
given by [17, 18]

jC.z/j2 D max
�
0; 1 � �

™=¢2
� jl � A.z/j 2

�
;

where ™ is the minimum mean-squared error. Only in the limit of very high bit rates
(i.e., ™ ! 0) is the filter not needed.

The minimization of subjective loudness of noise requires short-time spectral
analysis of speech and noise; such computations can result in significant commu-
nication delays and therefore are not suitable for telephone applications. However,
such computations can be carried out in audio coders that are used for efficient
storage or for one-way transmission of signals. We still have to realize the desired
noise spectrum E(f ) in speech coders. Communication delay is kept small by using
recursive filters which can keep noise in frequency regions between the formants
and harmonics at low levels [19].
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1.3.3.4 Overcoming the Computational Complexity of Predictive Coders

For proper selection of codewords using a meaningful fidelity criterion in the coder
shown in Fig. 1.2, the speech signal must be processed in blocks of approximately
5–10 ms in duration. For a sampling frequency of 8 kHz, a block of speech 10 ms
in duration has 80 samples. To encode the prediction error at 1 bit/sample, the
codebook has to be searched to find the best codeword out of 280 codewords. This
is impractical.

1.3.3.4.1 Multipulse Linear Predictive Coding

In our first attempt, we employed a sub-optimal procedure by building the codeword
one “pulse” at a time, but still computing the mean-squared error over 10 ms. The
location of each pulse was variable and was selected to minimize the total error over
10 ms interval. We called this coder a “multipulse linear predictive coder [20, 21]
(multipulse LPC)”. The locations and amplitudes of the pulses in the multipulse
coder are obtained sequentially—one pulse at a time. After the first pulse has been
determined, a new error is computed by subtracting out the contribution of this
pulse to the error and the location of the next pulse is determined by finding the
minimum of the new error. The process of locating new pulses is continued until the
error is reduced to acceptable values or the number of pulses reaches the maximum
value that can be encoded at the specified bit rate. We found that eight pulses in a
10 ms interval were sufficient for producing speech of high quality, regardless of
whether speech was voiced or otherwise. We encoded the multipulse signal at a bit
rate of 12 kb/s using run-length coding. Additional information around 4–6 kb/s was
needed to code the predictor coefficients, resulting in a bit rate of about 16–18 kb/s
for the speech signal. This was the first time we were able to produce high-quality
natural-sounding speech (close in quality to 7-bit �-law PCM) at these bit rates and
the results were reported [20] at the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) in Paris in May 1982. The results of
multipulse predictive coding convinced us that the techniques of predictive coding
hold promise for providing superior performance at low bit rates.

1.3.3.4.2 Encoding with Binary Trees

We continued our work on speech coding to achieve high speech quality at even
lower bit rates below 10 kb/s. We investigated binary tree encoding methods [22–
24] with two branches from each node. A list of random Gaussian numbers were
generated once and stored both at the transmitter and the receiver. The branches
of the binary tree were “populated” with these numbers as needed in a sequential
fashion. Thus, the first branch was populated with the first random number, the
second branch with the second random number, and so on. This resulted in a
1 bit/sample coding of the prediction error. We will not discuss the details of the
search strategy here, but the speech quality was high.
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1.3.3.4.3 Encoding with Trees Populated with Block Codes

For bit rates lower than 1 bit/sample, it is necessary to populate each branch of the
tree with a random sequence representing more than one sample of a codeword.
The bit rate for a tree with B branches and N samples per branch is (1/N) log2B
bit/sample. High quality speech was produced with a tree with ½ bit/sample (four
branches and four samples per branch) at a bit rate of 4 kb/s for the prediction
error [25].

1.3.3.4.4 Code-Excited Linear Predictive Coder (CELP)

In code-excited linear predictive coder, the set of possible codewords is stored in
a code-book. For a given speech segment, the optimum codeword is selected to
optimize a given fidelity criterion by exhaustive search of the codebook and an index
specifying the optimum codeword is transmitted to the receiver. In general, such a
search is impractical due to the large size of the codebooks. However, at very low
bit rates, exhaustive search of the codebook becomes feasible [26].

Consider the coding of a short block of speech signal 5 ms in duration. Each such
block consists of 40 speech samples at a sampling frequency of 8 kHz. A bit rate
of ¼ bit per sample corresponds to 1024 possible sequences (10 bits) of length 40
for each block. The transmitter of a CELP coder is shown in Fig. 1.3. Each member
of the codebook provides 40 samples of the prediction error and each sample is
scaled by an amplitude factor (gain) that is constant for the 5 ms block and is
reset to a new value once every 5 ms. The scaled samples are filtered sequentially
through two recursive filters, long-delay and short-delay correlation filters. The
regenerated speech samples at the output of the second filter are compared with

Fig. 1.3 Block diagram of the transmitter of a code-excited linear predictive coder for selecting
the optimum codeword
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the corresponding samples of the original speech signal to form a difference signal.
The difference signal representing the objective error is further processed through
a linear filter to attenuate those frequencies where the error is perceptually less
important and to amplify those frequencies where the error is perceptually more
important. Again, the codebook is populated with random sequences from a zero-
mean unit-variance white Gaussian process.

Our research work in early 1980s with the code-excited linear predictive coder
demonstrated that such coders offer considerable promise for producing high quality
speech at bit rates as low as 4.8 kb/s. The search procedure was still computationally
expensive; it took 125 s of Cray-1 CPU time to process 1 s of the speech signal. The
Cray-1 time was charged by Bell Laboratories central computing center at $2,000
per hour; each second of processed speech on Cray-1 produced a charge of about
$70 to our local budget and this was expensive research. The good news was that
the first generation of DSP chips from Motorola, Texas Instruments, and Western
Electric were already available and their prices were rapidly falling. Thanks to the
Moore’s law, performance of such chips was doubling every 18 months.

Looking back at 1985, 60 years had passed since Homer Dudley introduced
vocoders for the first time and the dream of coding speech to reduce the bit rate
by almost eight times over PCM at 64 kb/s had been realized. Low bit rate speech
coders were ready for commercial application in the telephone system.

Several algorithms have been developed to provide reduction in complexity of
the CELP coder. VSELP [27] is one such algorithm. The codebooks in the VSELP
encoders are organized with a predefined structure, which significantly reduces the
time required for search of the optimum codeword. VSELP coder with a bit rate of
8 kb/s was selected by TIA, the Telecommunications Industry Association, as the
standard [27] for use in North American digital cellular telephone systems in 1989.

Algebraic Code Excited Linear Prediction [28] (ACELP) is another algorithm
for reducing the search complexity of the CELP coders. This was the breakthrough
that made CELP computationally tractable—the number of pulses needed was not
great (4–8 per frame) and the pulse amplitudes could all be the same. This structure
is fundamental to G.729 and all subsequent CELP codecs today. The name for the
method comes from the fact that the pulse positions in the codewords are encoded to
form an algebraic code. The benefit is that the codebook does not need to be stored,
because it is algorithmically generated and even more importantly, it leads to an
efficient search for the best codeword. Due to these benefits, ACELP has been used
in several standards [29, 30].

1.4 Cellular Telephone Service

We are in the midst of a wireless revolution. The current revolution began with the
birth of the “cellular concept” at Bell Laboratories in 1947. However, the technology
to realize the concept did not exist. The cellular concept divided a service area into
a number of smaller “cells”. Radio frequencies could be reused in cells that were far
enough apart.
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In 1981, FCC released bandwidth in the 800–900 MHz range for commercial
operation of cellular phone service in the United States. The first generation cellular
systems were based on analog FM technology. AT&T started the first commercial
cellular telephone system in the United States in Chicago in 1983.

To meet the rapid growth of demand for cellular service in North America,
TIA, the Telecommunications Industry Association proposed in 1988 that the next
generation of cellular systems provide a tenfold increase in capacity and use digital
technology. Efforts to setup digital cellular telephony standards were started in
United States, Europe and Japan. Standards were set for speech coders as well as
for the multiple access technologies. Earlier analog FM systems used Frequency-
Division Multiple Access (FDMA), but digital cellular systems use time-division
multiple access (TDMA) or code-division multiple access (CDMA) technology.

1.4.1 Digital Cellular Standards

1.4.1.1 North American Digital Cellular Standards

In North America, the Telecommunication Industries Association (TIA) of the
Electronic Industries Association (EIA) sets the standard for cellular communica-
tion [29]. TIA standardized IS-54 VSELP coder at a bit rate of 8 kb/s for use in
North America in 1989. VSELP encodes speech at fixed bit rates and does not
achieve more than threefold increase in the capacity over the analog FM cellular
system. TIA proposed the use of CDMA in the United States.

TIA adopted QCELP developed by Qualcomm [31] for IS-96-A standard, oper-
ating at variable bit rates between 8 and 0.8 kb/s controlled by a rate determination
algorithm. Subsequently, TIA standardized IS-127, the enhanced variable rate coder
(EVRC), and IS-733 (QCELP) for personal communication systems, operating
at variable bit rates between 14.4 and 1.8 kb/s. For North American TDMA
standards, TIA standardized IS-641-A, based on ACELP, for enhanced full rate
speech coding [30].

1.4.1.2 European Digital Cellular Standards

The European Telecommunications Standards Institute (ETSI) sets cellular stan-
dards in Europe. Within ETSI, Groupe Special Mobile (GSM) standardized RPE-
LTP “Regular pulse Excitation with Long-Term Predictor” in 1987 [29]. This coder
has a bit rate of 13 kb/s. ETSI has also standardized half-rate (5.6 kb/s) coder using
VSELP, enhanced full rate (12.2 kb/s) coder using ACELP, and an adaptive multi-
rate (AMR) coder operating at eight bit rates from 12.2 to 4.75 kb/s (using ACELP
with four rates for the full-rate and four for the half-rate channels). The AMR coder
provided enhanced speech quality under high radio interference and also increased
battery life. The AMR codec is dominant today, although the wideband version is
preferred.
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1.5 The Future

Alexander Graham Bell was working on harmonic telegraph in 1875 to send eight
telegraph messages on a single wire, because the demand was growing rapidly and
it was expensive to install more telegraph lines. Over more than a century, we have
progressed from wired telegraph and telephones to wireless cellular phones and
from analog to digital networks, but the problem is the same. Growing demand to
send more and more bits on present digital wireless networks continues. The mobile
telephone service was introduced in 1983 so that people could use a single telephone
number to talk, no matter where they were—the home, the car, or on the road. Soon
wireless networks were carrying pictures and movies in addition to voice. Now,
cellular phones or smart phones are always with us, keeping the wireless networks
busy.

Technology for making computer chips run faster and faster involves shrinking
the size of transistors. Over the years, the lateral dimensions in microelectronic
circuits have been shrinking steadily, just as Moore’s law predicted. It is now
becoming harder and harder to achieve the doubling of chip performance every 18
months. Will Moore’s law breakdown in the future? Will quantum considerations
limit higher speeds? Will new quantum nanodevices take over?

A famous quote from Alexander Graham Bell, “When one door closes, another
door opens. But we so often look so long and so regretfully upon the closed door,
that we do not see the one which has been opened for us.” Bell failed in his attempts
to build a new telegraph but succeeded in opening the “telephone door”; Western
Union continued to look for long at the closed “telegraph door”. We do not know
what the future will be but it will emerge out of a succession of closed and open
doors. The future will belong to those who can navigate their way through the open
doors.
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Chapter 2
Challenges in Speech Coding Research

Jerry D. Gibson

Abstract Speech and audio coding underlie many of the products and services
that we have come to rely on and enjoy today. In this chapter, we discuss speech
and audio coding, including a concise background summary, key coding methods,
and the latest standards, with an eye toward current limitations and possible future
research directions.

2.1 Introduction

We distinguish between speech and audio coding according to the bandwidth
occupied by the input source. Narrowband or telephone bandwidth speech occupies
the band from 200 to 3,400 Hz, and is the band classically associated with
telephone quality speech. The category of wideband speech covers the band 50 Hz–
7 kHz. Audio is generally taken to cover the range of 20 Hz–20 kHz, and this
bandwidth is sometimes referred to today as fullband audio [1, 2]. In recent
years, quite a few other bandwidths have attracted attention, primarily for audio
over the Internet applications, and the bandwidth of 50 Hz–14 kHz, designated as
superwideband, has gotten considerable recent attention [3]. As the frequency bands
being considered move upward from narrowband speech through wideband speech
and superwideband audio, on up to fullband audio, the basic structures for digital
processing and the quality expectations change substantially. In the following,
we elaborate on these differences and highlight the challenges in combining the
processing of this full range of bandwidths in single devices.
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2.2 Speech Coding

The goal of speech coding is to represent speech in digital form with as few bits as
possible while maintaining the intelligibility and quality required for the particular
application [2]. Speech coding is a critical technology for videoconferencing
systems, digital cellular communications, and voice over Internet protocol (VoIP)
applications, while audio coding is essential for portable audio players, audio
streaming, video streaming, and the storage and playback of movies.

The basic approaches for coding narrowband speech evolved over the years
from waveform following codecs to code excited linear prediction (CELP) based
codecs [2]. The process of this evolution was driven by applications that required
lower bandwidth utilization and by advances in digital signal processing, which
were facilitated by improvements in processor speeds that allowed more sophis-
ticated processing to be incorporated. The reduction in bit rates was obtained by
relaxing constraints on encoding delay and on complexity. This later relaxation
of constraints, particularly on complexity, should be a lesson learned for future
research; namely, complexity should not be a dominating concern at the beginning
of a basic research effort.

Note that the basic speech coding problem for narrowband speech, in particular,
follows the distortion rate paradigm; that is, given a rate constraint set by the
application, the codec is designed to minimize distortion. The resulting distortion
is not necessarily small or inaudible—just acceptable for the given constraints.
The distortion rate structure should be contrasted with the rate distortion problem
wherein the constraint is on allowable distortion and the rate required to achieve
that distortion is minimized. Notice that for the rate distortion approach, a specified
distortion is the goal and the rate is adjusted to obtain this level of distortion.
Voice coding for digital cellular communications is an example of the distortion
rate approach, since it has a rate constraint, while coding of fullband audio typically
has the goal of transparent quality, and hence is an example of the rate distortion
paradigm. We elaborate more on these ideas in the following.

We use the terms speech coding and voice coding interchangeably in this paper.
Generally, it is desired to reproduce the voice signal, since we are interested in not
only knowing what was said, but also in being able to identify the speaker.

Given a particular source such as voice, audio, or video, the classic tradeoff
in lossy source compression is rate versus distortion—the higher the rate, the
smaller the average distortion in the reproduced signal. Of course, since a higher
bit rate implies a greater channel or network bandwidth requirement, the goal is
always either to minimize the rate required to satisfy the distortion constraint or
minimize the distortion for a given rate constraint. For speech coding, we are
interested in achieving a quality as close to the original speech as possible within
the rate, complexity, latency, and any other constraints that might be imposed by the
application of interest. Encompassed in the term quality are intelligibility, speaker
identification, and naturalness. Absolute category rating (ACR) tests are subjective
tests of speech quality and involve listeners assigning a category and rating for each
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speech utterance according to the classifications, such as, Excellent (5), Good (4),
Fair (3), Poor (2), and Bad (1). The average for each utterance over all listeners is
the Mean Opinion Score (MOS) [1].

Of course, listening tests involving human subjects are difficult to organize and
perform, so the development of objective measures of speech quality is highly
desirable. The perceptual evaluation of speech quality (PESQ) method, standardized
by the ITU-T as P.862, was developed to provide an assessment of speech codec
performance in conversational voice communications. The PESQ has been and can
be used to generate MOS values for both narrowband and wideband speech [4, 5].
While no substitute for actual listening tests, the PESQ and its wideband version are
widely used for initial codec evaluations and are highly useful. A newer objective
measure, designated as P.863 POLQA (Perceptual Objective Listening Quality
Assessment) has been developed but it has yet to receive widespread acceptance [6].
For a tutorial development of perceptual evaluation of speech quality, see [7].

More details on MOS and perceptual performance evaluation for voice codecs are
provided in the references [1, 2, 7]. Later in the chapter, we discuss the relatively
new nine point ACR ratings that are becoming popular as superwideband speech
and audio become more prevalent in codec designs.

2.2.1 Speech Coding Methods

The most common approaches to narrowband speech coding today center around
two paradigms, namely, waveform-following coders and analysis-by-synthesis
methods. Waveform-following coders attempt to reproduce the time domain speech
waveform as accurately as possible, while analysis-by-synthesis methods utilize the
linear prediction model and a perceptual distortion measure to reproduce only those
characteristics of the input speech determined to be most important perceptually.
Another approach to speech coding breaks the speech into separate frequency bands,
called subbands, and then codes these subbands separately, perhaps using a wave-
form coder or analysis-by-synthesis coding for each subband, for reconstruction and
recombination at the receiver. Extending the resolution of the frequency domain
decomposition leads to transform coding and coding using filter banks, wherein a
transform is performed on a frame of input speech/audio and the resulting transform
coefficients are quantized and transmitted to reconstruct the speech/audio from the
inverse transform. Subband decompositions and transform based decompositions
are very closely related and combinations of the two are common in codecs that
code bandwidths beyond narrowband speech.

2.2.1.1 Waveform Coding [2]

Familiar waveform-following methods are logarithmic pulse code modulation (log-
PCM) and adaptive differential pulse code modulation (ADPCM), and both have
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Fig. 2.1 An ADPCM encoder and decoder

found widespread applications. Log PCM at 64 kilobits/s (kbps) is the speech codec
that was the work horse for decades in the long distance public switched telephone
network at a rate of 64 kbps, and it is the most widely employed codec for VoIP
applications. It is a simple coder and it achieves what is called toll quality, which is
the standard level of performance against which all other narrowband speech coders
are judged.

Log PCM uses a nonlinear quantizer to reproduce low amplitude signals, which
are important to speech perception, well. There are two closely related types of log-
PCM quantizer used in the World—�-law, which is used in North America, South
Korea and Japan, and A-law, which is used in the rest of the world. Both achieve toll
quality speech, and which, in terms of the MOS value is usually between 4.0 and
4.5 for log-PCM. These quality levels are considered very good but not transparent.

ADPCM operates at 40 kbps or lower, and it achieves performance comparable to
log-PCM by using an adaptive linear predictor to remove short-term redundancy in
the speech signal before adaptive quantization of the prediction error. See Fig. 2.1.
The reasoning behind differential coding like ADPCM is that by subtracting a
predicted value from each input sample, the dynamic range of the signal to be
quantized is reduced, and hence, good reproduction of the signal is possible with
fewer bits. The most common form of ADPCM uses what is called backward adap-
tation of the predictors and quantizers to follow the waveform closely. Backward
adaptation means that the predictor and quantizer are adapted based upon past
reproduced values of the signal that are available at the encoder and decoder [2].
No predictor or quantizer parameters are sent along as side information with the
quantized waveform values.

2.2.1.2 Subband and Transform Methods [2]

The process of breaking the input speech into subbands via bandpass filters and
coding each band separately is called subband coding. To keep the number of
samples to be coded at a minimum, the sampling rate for the signals in each band is
reduced by decimation. Of course, since the bandpass filters are not ideal, there
is some overlap between adjacent bands and aliasing occurs during decimation.
Ignoring the distortion or noise due to compression, Quadrature mirror filter (QMF)
banks allow the aliasing that occurs during filtering and subsampling at the encoder
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to be cancelled at the decoder. The codecs used in each band can be PCM, ADPCM,
or even an analysis-by-synthesis method. The advantage of subband coding is that
each band can be coded to a different accuracy and that the coding error in each
band can be controlled in relation to human perceptual characteristics.

Transform coding methods were first applied to still images but later investigated
for speech. The basic principle is that a block of speech samples is operated on by
a discrete unitary transform and the resulting transform coefficients are quantized
and coded for transmission to the receiver. Low bit rates and good performance
can be obtained because more bits can be allocated to the perceptually important
coefficients, and for well-designed transforms, many coefficients need not be coded
at all, but are simply discarded, and acceptable performance is still achieved.

Although classical transform coding has not had a major impact on narrowband
speech coding and subband coding has fallen out of favor in recent years (with
a slight recent resurgence such as the adoption of a subband codec optional for
Bluetooth [8]), filter bank and transform methods play a critical role in high quality
audio coding, and several important standards for wideband, superwideband, and
fullband speech/audio coding are based upon filter bank and transform methods.
Although it is intuitive that subband filtering and discrete transforms are closely
related, by the early 1990s, the relationships between filter bank methods and
transforms were well-understood [9]. Today, the distinction between transforms
and filter bank methods is somewhat blurred, and the choice between a filter bank
implementation and a transform method may simply be a design choice. Often a
combination of the two is the most efficient.

2.2.1.3 Analysis-by-Synthesis Methods [2, 10]

Analysis-by-synthesis (AbS) methods are a considerable departure from waveform-
following techniques and from frequency domain methods as well, although they
do build on linear prediction as used in ADPCM. The most common and most
successful analysis-by-synthesis method is code-excited linear prediction (CELP).
In CELP speech coders, a segment of speech (say, 5–10 ms) is synthesized using
the linear prediction model along with a long-term redundancy predictor for all
possible excitations in what is called a codebook. For each excitation, an error signal
is calculated and passed through a perceptual weighting filter.

This operation is represented in Fig. 2.2a. The excitation that produces the
minimum perceptually weighted coding error is selected for use at the decoder as
shown in Fig. 2.2b. Therefore, the best excitation out of all possible excitations for
a given segment of speech is selected by synthesizing all possible representations at
the encoder, hence, the name analysis-by-synthesis (AbS). The predictor parameters
and the excitation codeword are sent to the receiver to decode the speech. It is
instructive to contrast the AbS method with waveform coders such as ADPCM
where each sample is coded as it arrives at the coder input.

The perceptual weighting is key to obtaining good speech coding performance in
CELP, and the basic idea is that the coding error is spectrally shaped to fall below
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Fig. 2.2 (a) Encoder for code-excited linear predictive (CELP) coding with an adaptive codebook.
(b) CELP decoder with an adaptive codebook and postfiltering
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Fig. 2.3 Perceptual weighting of the coding error as a function of frequency

the envelope of the input speech across the frequency band of interest. Figure 2.3
illustrates the concept wherein the spectral envelope of a speech segment is shown,
along with the coding error spectrum without perceptual weighting (unweighted
denoted by short dashes) and the coding error spectrum with perceptual weighting
(denoted by long dashes). The perceptually weighted coding error falls below the
spectral envelope of the speech across most of the frequency band of interest, just
crossing over around 3,100 Hz. The coding error is thus masked by the speech
signal itself. In contrast, the unweighted error spectrum is above the speech spectral
envelope starting at around 1.6 kHz, which produces audible coding distortion for
the same bit rate. The reader should note that if one analyzes each frame of a CELP-
coded speech segment, the goal of pushing the error spectrum below that of the input
speech is often not obtained across the entire band. This is because the perceptually
shaping methods used are approximate and have not yet been refined to guarantee
the desired result [2].

In recent years, it has become common to use an adaptive codebook structure to
model the long term memory rather than a cascaded long term predictor. A decoder
using the adaptive codebook approach is shown in Fig. 2.2b. The analysis-by-
synthesis procedure is computationally intensive, and it is fortunate that algebraic
codebooks, which have mostly zero values and only a few nonzero pulses, have been
discovered and work well for the fixed codebook [10].
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2.2.1.4 Postfiltering [11]

Although a perceptual weighting filter is used inside the search loop for the best
excitation in the codebook for analysis-by-synthesis methods, there is often some
distortion remaining in the reconstructed speech that is sometimes characterized
as “roughness.” This distortion is attributed to reconstruction or coding error as a
function of frequency that is too high at regions between formants and between pitch
harmonics. Several codecs thus employ a postfilter that operates on the reconstructed
speech to de-emphasize the coding error between formants and between pitch
harmonics. This is shown as “Post-processing” in Fig. 2.2b.

The general frequency response of the postfilter has the form similar to the
perceptual weighting filter with a pitch or long term postfilter added. There is also
a spectral tilt correction since the formant-based postfilter results in an increased
low pass filter effect, and a gain correction term [2, 10, 11]. The postfilter is usually
optimized for a single stage encoding (however, not always), so if multiple tandem
connections of speech codecs occur, the postfilter can cause a degradation in speech
quality.

2.2.1.5 Voice Activity Detection and Silence Coding

For many decades, researchers have been interested in assigning network capacity
only when a speaker is “active,” by removing silent periods in speech to reduce
the average bit rate. This was successfully accomplished for some digital cellular
coders where silence is removed and coded with a short length code and then
replaced at the decoder with “comfort noise.” Comfort noise is needed because the
background sounds for speech coders are seldom pure silence and inserting pure
silence generates unwelcome artifacts at the decoder and can cause the impression
that the call is lost [10].

Today, many codecs use voice activity detection to excise non-speech signals so
that non-speech regions do not need to be coded explicitly. More sophisticated seg-
mentation can also be performed so that different regions can be coded differently.
For example, more bits may be allocated to coding strongly voiced segments and
fewer allocated to unvoiced speech. Also, speech onset might be coded differently
as well.

2.2.2 Speech Coding Standards

Different standardization bodies have adopted a host of codecs for rapidly evolving
applications. For narrowband speech coding, the ITU-T and the several digital
cellular standardization efforts are the dominant activities. There is a vast number
of standards that have been set. We begin the discussion with ITU-T standardized
codecs since some of those codecs have served as the basis for cellular codecs, and
since some of these codecs have been adopted for VoIP applications.
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Table 2.1 Comparison of ITU-T narrowband speech codecs

Standards body ITU

Recommendation G.711 G.726 G.728 G.729
Coder type Companded PCM ADPCM LD-CELP CS-ACELP
Bite rate (kbps) 64 16–40 16 8
Complexity (MIPS) <<1 �1 �30 �20
Frame size (ms) 0.125 0.125 0.625 10
Lookahead (ms) 0 0 0 5
Codec delay (ms) 0.25 0.25 1.25 25

2.2.2.1 ITU-T Standards

Table 2.1 lists some of the narrowband voice codecs that have been standardized
by the ITU-T over the years, including details concerning the codec technology,
transmitted bit rate, performance, complexity, and algorithmic delay. Those shown
include G.711, G.726, G.728, and G.729 for narrowband (telephone bandwidth)
speech (200–3,400 Hz), where the first two codecs are waveform-following codecs,
and the latter three are variations on code excited linear prediction.

G.711 at 64 kilobits/s (kbps) is the voice codec most often used in VoIP and
many applications wherein somewhat higher bit rates are workable and very low
complexity is desirable. This codec is based on a nonlinear scalar quantization
method called logarithmic pulse code modulation (log-PCM), as discussed earlier.
The G.726 waveform-following codec is based on ADPCM and operates at bit
rates of 40, 32, 24, and 16 kbps. This codec achieves low delay and is still
considered a low complexity codec. G.728 is a code-excited technique but when
it was standardized, it was still desired to have a low encoding delay of 5 ms or less.
G.728 is much more complex than either G.726 or G.711.

As the desired bit rate moved toward 8 kbps, the low delay requirement was
relaxed. This allowed code-excited linear prediction methods to move to the
forefront. The G.729 codec is an analysis-by-synthesis codec based on algebraic
code excited linear prediction (ACELP), and it uses an adaptive codebook to
incorporate the long term pitch periodicity [2, 10]. In addition to a lower complexity
version of G.729, called G.729A, there is a higher rate codec based on G.729,
designated G.729E, and a wideband version designated G.729.1 [12]. The G.729
codec structure has been very influential on subsequent voice coding standards
for VoIP and digital cellular networks and this structure can be seen in most
standardized voice codecs today.

Even though we are quite comfortable communicating using telephone band-
width speech (200–3,400 Hz), there is considerable interest in compression methods
for wideband speech covering the range of 50 Hz–7 kHz. The primary reasons for
the interest in this band are that wideband speech (and wider bands) improves
intelligibility, naturalness, and speaker identifiability. Table 2.2 lists codecs for
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wideband speech, including G.722, G.722.1 [13], and G.722.2 [14]. Also, shown
in the table are ITU-T codecs G.718 for wideband speech (50 Hz–7 kHz) [15], and
G.719 for fullband audio [16, 17].

The first application of wideband speech coding was to videoconferencing, and
the first standard, G.722, separated the speech into two subbands and used ADPCM
to code each band. The G.722 codec is relatively simple and produces good quality
speech at 64 kbps, and lower quality speech at the two other possible codec rates
of 56 and 48 kbps [2]. G.722 at 64 kbps is often employed as a benchmark for the
performance of other wideband codecs.

Two additional wideband speech coding standards, designated as G.722.1 and
G.722.2, utilize coding methods that are quite different from G.722, as well
as completely different from each other. The G.722.1 standard employs a filter
bank/transform decomposition called the modulated lapped transform (MLT) and
operates at the rates of 24 and 32 kbps. The coder has an algorithmic delay of 40 ms,
which does not include any computational delay. Since G.722.1 employs filter bank
methods, it performs well for music and less well for speech. This codec structure
for G.722.1 has much in common with the fullband audio codecs used for many
music player products such as MP3.

G.722.2 is an ITU-T designation for the adaptive multirate wideband (AMR-
WB) speech coder standardized by the cellular body 3GPP [14]. This coder operates
at rates of 6.6, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 23.05, and 23.85 kbps
and is based upon an algebraic CELP (ACELP) analysis-by-synthesis codec. Since
ACELP utilizes the linear prediction model, the coder works well for speech but
less well for music, which does not fit the linear prediction model. G.722.2 achieves
good speech quality at rates greater than 12.65 kbps and performance equivalent to
G.722 at 64 kbps with a rate of 23.05 kbps and higher.

G.718 is a wideband speech codec that has an embedded codec structure and
that operates at 8, 12, 16, 24, and 32 kbps, plus a special alternate coding mode
that is bit stream compatible with AMR-WB. G.719 is a fullband audio codec that
has relatively low complexity and low delay for a fullband audio codec, and the
complexity is approximately evenly split between the encoder and decoder. This
codec is targeted toward real-time communications such as in videoconferencing
systems and the high definition telepresence applications.

2.2.2.2 Digital Cellular Standards

Digital cellular applications impose a stringent set of requirements on voice codecs
in addition to rate and quality, such as complexity, robustness to background
impairments, and the ability to perform well over wireless channels. Over the
years, standards have been set by different bodies for different segmentations
of the market, particularly according to geographic regions and wireless access
technologies. More specifically, digital cellular standards were produced in the late
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Table 2.3 Selected GSM voice codecs

Codec
Speech coding
bit-rate (in kbit/s)

System/traffic
channel

Speech coding
algorithm

Complexity
WMOPS

FR codec 13.0 GSM FR Regular Pulse
Excitation-Long
Term Prediction
(RPE-LTP)

3.0

HR codec 5.6 GSM HR Vector-Sum Excited
Linear Prediction
(VSELP)

18.5

EFR codec 12.2 GSM FR Algebraic Code
Excited Linear
Prediction (ACELP)

15.2

AMR codec 12.2, 10.2, 7.95,
7.4, 6.7, 5.9, 5.15,
4.75

GSM FR (all eight
modes), GSM HR
(six lowest modes),
3G WCDMA (all
modes)

Algebraic Code
Excited Linear
Prediction (ACELP)

16.8

AMR-WB codec 23.85, 23.05, 19.85,
18.25, 15.85, 14.25,
12.65, 8.85, 6.60

GSM FR (seven
lowest modes),
EDGE (all modes),
3G WCDMA (all
modes)

Algebraic Code
Excited Linear
Prediction (ACELP)

35.4

1980s and early 1990s in Europe, Japan, and North America. The competing North
American standards then led to standards efforts more pointed toward each of the
competing technologies.

The GSM standards developed in Europe were the basis of perhaps the first
widely implemented digital cellular systems. Table 2.3 lists voice codecs standard-
ized for GSM systems, wherein FR stands for “Full rate” and HR stands for “Half
rate.” The terms FR and HR refer to the total transmitted bit rate for combined voice
coding and error correction (or channel) coding, and FR is always 22.8 kbps and HR
is always 11.4 kbps. By subtracting the rate of the voice codec from either 22.8 or
11.4, one obtains the bit rate allocated to error control coding.

The first GSM FR voice codec standardized in 1989 was not an analysis-by-
synthesis codec but used a simpler regular pulse excited linear predictive structure
with a long term predictor. As a result, the codec had to be operated at 13 kbps to
achieve the needed voice quality, but it had very low complexity. An important and
somewhat dominant voice codec in recent years is the Adaptive Multirate Codec,
both narrowband and wideband versions. Note that AMR-NB has multiple rates
and can be operated as a FR or HR codec, depending upon the rates. For GSM, the
AMR-NB codec rates are not source-controlled as some prior codecs were, but the
rates are switchable and usually adjusted by the network. The AMR codec maintains
compatibility with other systems by incorporating the GSM EFR (Enhanced Full
Rate) codec at 12.2 kbps and IS-641 at 7.4 kbps as two of its selectable rates. The
AMR wideband codec, AMR-WB, also based upon ACELP is also a very important
codec today; however, note how the complexity has grown.
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2.2.2.3 VoIP Standards

VoIP for wireless access points involves many of the same issues as for wireline
VoIP, such as voice quality, latency, jitter, packet loss performance, and packeti-
zation. One new challenge that arises is that since the physical link in Wi-Fi is
wireless, bit errors commonly occur and this, in turn, affects link protocol design
and packet loss concealment. A second challenge is that congestion can play a role,
thus impacting real time voice communications. The way these two issues relate to
voice codecs are that packet loss concealment methods are more critical and that
codec delay should be more carefully managed for such wireless access points.

Turning our attention to the voice codecs normally implemented in VoIP
solutions, we find that at this point in time, many VoIP codecs are borrowed from
other standards bodies. Specifically, G.711, G.729, and G.722 are commonly offered
in VoIP products. Additionally, AMR-NB and perhaps AMR-WB are optional voice
codecs. All of these codecs have well-developed packet loss concealment methods,
which makes them quite compatible with wireless applications. One thing to notice
is that the AMR codecs are the only ones that are common with any digital cellular
standards, and this can lead to tandem coding penalties when digital cellular and
wireless VoIP are used for portions of the same connection for a voice call. The
need to support multiple codecs can also be an issue as cell phones morph into
smartphones that support both digital cellular and wireless access point connectivity.

There have also been voice codecs developed outside of standards bodies and
offered as open source. Two such codecs are Speex [18] and iLBC (internet Low
Bitrate Codec) [19]. Speex has become obsolete with the introduction of the Opus
codec [20, 21], described in a later section. These codecs have been compared to
other standardized codecs in several studies [22–24].

2.3 Audio Coding [25, 26]

The basic very successful paradigm for audio coding, meaning coding full band
audio, in the past two decades has been the filter bank/transform based approach
with noise masking using an iterative bit allocation. This technique does not lend
itself to real time communications directly because of the iterative bit allocation
method and because of complexity, and to a lesser degree, delay in the filter
bank/transform/noise masking computations. As a result, the primary impact of high
quality audio coding has been to audio players (decoders) such as MP3 and audio
streaming applications.

A high level block diagram of an audio codec is shown in Fig. 2.4. In this
diagram, two paths are shown for the sampled input audio signal, one path is through
the filter bank/transform that performs the analysis/decomposition into spectral
components to be coded, and the other path into the psychoacoustic analysis that
computes the noise masking thresholds. The noise masking thresholds are then
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Fig. 2.4 Generic audio coding approach

used in the bit allocation that forms the basis for the quantization and coding in
the analysis/decomposition path. All side information and parameters required for
decoding are finally losslessly coded for storage or transmission.

The primary differences among the different audio coding schemes that have
been standardized and/or found wide application are in the implementations
of the time/frequency analysis/decomposition in terms of the types of filter
banks/transforms used and their resolution in the frequency domain. Note that
the frequency resolution of the psychoacoustic analysis is typically finer than the
analysis/decomposition path since the perceptual noise masking is so critical for
good quality. There are substantive differences in the other blocks as well, with
many refinements over the years [2, 25, 26].

The strengths of the basic audio coding approach are that it is not model based, as
in speech coding using linear prediction, and that the perceptual weighting is applied
on a per-component basis, whereas in speech coding, the perceptual weighting relies
on a spectral envelope shaping. A weakness in the current approaches to audio
coding is that the noise masking theory that is the foundation of the many techniques
is three decades old; further, the masking threshold for the entire frame is computed
by adding the masking thresholds for each component. The psychoacoustic/audio
theory behind this technique of adding masking thresholds has not been firmly
established [25].

Other key ideas in the evolution of the full band audio coding methods have been
pre- and post-masking and window switching to capture transients and steady state
sounds. Details of the audio coding methods are left to the very comprehensive
references cited [25, 26]. However, we will revisit full band audio coding in
discussing the newer standards and when considering new research directions.

2.4 Newer Standards

The standardization processes continue to be vigorous in the classically active
standards bodies such as ITU-T, the ISO, and the digital cellular community.
Furthermore, there is considerable activity in developing alternative coding methods
outside of the standards bodies that may be free of intellectual property claims.
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A unifying thread in all of these efforts to develop new codecs is to have codecs that
cover narrowband, wideband, superwideband, and full band in one specification.
Differences in the codec development efforts revolve around whether the delay
needed in coding is low enough to allow real time communications or whether
the latency precludes most such real time applications. See [1, 27] for a more
complete discussion of delay in voice codec design and its impact on voice coding
applications.

Efforts in the last decade to design one codec that would cover all bands
from narrowband speech to fullband audio have led to the approach of combining
code excited linear prediction methods to cover narrowband and wideband speech
with the filter bank methods to cover full band audio, using switching or mixing
in between. Such a codec structure may be called an integrated codec, and
examples of such integrated codecs include G.718 which combines ACELP and
MDCT technologies, originally only covering 50 Hz–7 kHz but since extended to
superwideband [28], and the recently standardized MPEG USAC (Unified Speech
and Audio Coding) architecture shown in Fig. 2.5, which covers the entire range
from 20 Hz to 20 kHz, with the goal of coding voice and fullband audio well [29].
The USAC codec utilizes signal classification and down mixes the stereo to mono
for coding in the low band. There is a low pass/high pass decomposition, and
enhanced spectral band replication (eSBR) is used to code the high band. There
is both a baseline mode and an extension mode.

The applications targeted for the MPEG USAC codec are multimedia download
to mobile devices, audio books, mobile TV, and digital radio. While there are strong
targets for improving audio performance and it is designed to code speech, audio,
and mixed content, there are no specifications on complexity or delay.

At first inspection, these integrated structures can be viewed as merely bolting
together successful codecs for different bands, but the USAC effort notes that it
is the handling of the transitions between different coding paradigms that requires
innovation beyond a simple combination of known schemes. It is not difficult to
understand how challenging it is to combine such different codec designs, and so
the USAC and related codecs must be considered a substantial advance in the state-
of-the-art.

A key limitation of the USAC effort is the lack of support for conversational
services, which require low encoding delay and limitations on complexity. Several
new and developing standards try to encompass these very important conversational
applications.

For conversational speech, the ITU-T standardization efforts have already
resulted in G.711.1 [30] and G.729.1 [12], both of which are extensions of existing
standards to wider bands and different, higher rates. A superwideband version
of G.722.1, designated G.722.1 Annex C [31], has also been standardized. The
G.722.1C codec has a coding delay of 40 ms and a relatively modest complexity
with transmitted bit rates of 24, 32 and 48 kbps. It codes voice, audio, and natural
sounds well, and it is targeted for applications to videoconferencing, VoIP, and
battery powered devices.
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It is evident that digital cellular systems Worldwide will be based on 3GPP Long
Term Evolution (LTE), which utilizes Orthogonal Frequency Division Multiple
Access (OFDMA) in the downlink and Single Carrier Frequency Division Multiple
Access (SC-FDMA) in the uplink. The initial releases of LTE rely upon the
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Table 2.4 Objectives and features of the EVS codec

Enhanced quality and coding efficiency for narrowband (NB: 200–3,400 Hz) and
wideband (WB: 50–7,000 Hz) speech
Enhanced quality by the introduction of super wideband (SWB: 50–14,000 Hz) speech
Enhanced quality for mixed content and music in conversational applications (e.g. in-call
music)
Robustness to packet loss and delay jitter leading to optimized behavior in IP
environments
Backward interoperability to AMR-WB by EVS modes supporting the AMR-WB codec
format.
Source-controlled variable bit rate modes in addition to constant bit rate modes

AMR-NB/WB voice codecs for voice coding, but this is a stop gap effort while
bodies work to develop a voice codec specifically for LTE for Enhanced Voice
Services (EVS) [32]. Some objectives and features of the EVS voice codec for
LTE are summarized in Table 2.4. Here we see that there is a desire to maintain
interoperability with the AMR codecs while adding a superwideband capability and
giving more attention to in-call music. As the EVS codec nears final characteriza-
tion, there are some specific advances that will be widely deployed and used. First,
new 5.9 kbps source controlled variable bit rate (VBR) modes for both narrowband
and wideband speech that achieve the same quality as the AMR-NB/WB codec but
at a lower average rate have been added to improve capacity. Further, there is better
constant bit rate (CBR) coding of both WB and SWB music, and improved CBR
coding of WB and SWB speech. Also included are optional full band and stereo
modes for voice and music. Key design constraints are that codec delays up to 32 ms
are allowed and a complexity up to twice that of AMR-WB, namely, 88 WMOPS.

High quality audio codecs for non-conversational services such as streaming,
broadcasting, and multicasting also have been standardized earlier by 3GPP. These
codecs are AMR-WBC and aacPlus, but their high algorithmic delay restricts their
importance for two-way conversational voice.

Another codec standardization effort had the goal of coding narrowband voice
all the way up to fullband audio with the constraint of low delay. The Opus Audio
Codec, standardized by the IETF, is designed for interactive voice and audio and has
three modes [20, 21]: (a) A linear prediction based mode for low bit rate coding up
to 8 kHz bandwidth, (b) A hybrid linear prediction and MDCT mode for fullband
speech/audio at medium bit rates, and (c) an MDCT-only mode for very low latency
coding of speech and audio. It has a wide range of bit rates from 6 kbps up to
510 kbps to support full band audio. Further, Opus has available frame sizes from
2.5 ms up to 60 ms and algorithmic delay in the range of 5–62.5 ms. Details of this
codec can be found at [20, 21]. Speech quality tests indicate that the Opus codec
produces excellent voice quality at medium rates of 20–40 kbps [23].
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2.5 Emerging Topics

As the field of speech coding continues to evolve, new issues emerge, old challenges
persist, and often old constraints are relaxed. It is clear from the prior discussions
that extending the bandwidth covered by codecs is a high priority for essentially
every standards activity. As stated earlier, wider bandwidths improve intelligibility,
naturalness, and speaker identifiability. The advantages of incorporating wider
bandwidths need to be elaborated further given the extraordinary efforts of the
standards bodies to achieve ever-increasing bandwidth capabilities in codecs [33].

Consonants are key in the intelligibility of many words and phrases. The
frequency content of consonants often occurs in the 4–14 kHz frequency range,
which is partially encompassed by wideband speech, but much more so by the
newer superwideband classification. There are other factors that arise in standard
videoconferencing, VoIP, and even person-to-person calls that are addressed by
wider bandwidths. In conference rooms and other such venues, there are natural
reflections off walls and ceilings that can degrade communications, especially if a
speaker moves away from a microphone or speakers are different distances from
microphones. In person, a listener is able to use both ears, which greatly helps in
alleviating misunderstandings, but for audio and video conference calls, often there
is only one microphone and therefore only one channel being delivered to the other
end. Experiments show that wider bandwidths aid greatly in reducing confusion and
easing listener fatigue.

Another important point in this multinational business environment and with
non-native English speakers routinely playing critical roles in organizations is
accented speech. This point also holds for speakers within a country, such as the
US, where there are quite different speech patterns. Speakers with accents will often
have different pronunciations and different grammatical patterns. As a result, native
listeners may not be able to correctly process sentences when there are different
pronunciations because of the different grammatical structure. Increasing bandwidth
provides considerable improvement in these situations.

Extending the lower end of the band is also of substantial value, since frequencies
below 200 Hz add to listener comfort, warmth, and naturalness. It is thus very clear
why the exceptional efforts to extend the bandwidths covered by codecs are being
pursued.

Stereo audio is a new effort in communications applications. The capture of
stereo, or more generally, multichannel audio, is simpler than it sounds, even for
handheld devices. For example, there may be two microphones, one pointed toward
the active speaker and the other outwardly to record the environment. There are
many other microphone configurations that may be desirable as well [22]. As stereo
audio capture and delivery becomes of interest, it is necessary to make decisions
as to how to allocate bit rate; that is, if a choice must be made, is it preferable to
send wider bandwidth speech/audio or stereo channels? Coupled to this question is
how to evaluate the quality of the expanded bandwidths and additional multichannel
audio when delivered to the user.
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A recent addition to the perceptual quality evaluation area is the use of a nine
point range for the MOS values [22, 32]. Unlike the five point scale, only the extreme
values are given designations of Excellent (9) and Very Bad (1). It is shown that this
scale allows the tests to be accomplished relatively quickly and that the various
conditions are distinguished by the tests. Comparisons are given in [22] and [23],
wherein the latter contains a performance evaluation of the Opus codec.

2.6 Conclusions and Future Research Directions

There are several clear trends in recent standardization efforts. First, single standard
codecs that encompass the entire range of narrowband to fullband are highly
desirable and the norm for the future. Second, while latency constraints have been
relaxed for many applications, there is still a demand for lower latency codecs to
be used in communications services. Third, increasing complexity is acceptable
as long as the speech/audio quality is substantially improved. Fourth, there is a
strong impetus to capture and code stereo channels for many applications, including
handheld devices.

Another fact is also clear—the current standards still rely very heavily on the
well-worn coding paradigms of code-excited linear prediction and transform/filter
bank methods with noise masking. It is this fact that points to a great need for new
research directions to try and identify new codec structures to continue the advance
in speech/audio codec compression developments. Although standardization efforts
have resulted in many new codec designs and the understanding of the basic
structures, it is unlikely that given the time constraints and continuously competitive
nature of codec standardization processes, these new research directions will be
undertaken through the development of new standards.

Some suggested research directions are to incorporate increased adaptivity into
the codec designs. For example, adapting the parameters of the perceptual weighting
filters in CELP is one possible research direction. Another is to incorporate adaptive
filter bank/transform structures such as adaptive band combining and adaptive band
splitting. A third more difficult direction is to identify entirely new methods to
incorporate perceptual constraints into codec structures.

It is hoped that the current chapter will motivate some of these new research
efforts.
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Chapter 3
Scalable and Multi-Rate Speech Coding
for Voice-over-Internet Protocol
(VoIP) Networks

Tokunbo Ogunfunmi and Koji Seto

Abstract Communication by speech is still a very popular and effective means
of transmitting information from one person to another. Speech signals form the
basic method of human communication. The information communicated in this case
is verbal or auditory information. The methods used for speech coding are very
extensive and continuously evolving.

Speech Coding can be defined as the means by which the information-bearing
speech signal is coded to remove redundancy thereby reducing transmission band-
width requirements, improving storage efficiency, and making possible myriad other
applications that rely on speech coding techniques.

The medium of speech transmission has also been changing over the years.
Currently a large percentage of speech is communicated over channels using
internet protocols. The voice-over-internet protocols (VoIP) channels present some
challenges that have to be overcome in order to enable error-free, robust speech
communication.

There are several advantages to use bit-streams that are multi-rate and scalable
for time-varying VoIP channels. In this chapter, we present the methods for scalable,
multi-rate speech coding for VoIP channels.

3.1 Introduction

Speech communication using the Voice over Internet Protocol (VoIP) [57, 59, 66,
78] is rapidly replacing the old but still ubiquitous circuit switched telephone
service. However, speech packetized and transmitted through packet-switched
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networks incurs numerous impairments including delay, jitter, packet loss and
decoder clock offset, which degrade the quality of the speech. Advanced signal
processing algorithms can combat these impairments and render the perceived
quality of a VoIP conversation to be as good as that of the existing telephone system.

For example, the increased transport delay in VoIP networks renders the normally
tolerable echoes to be more annoying. Jitter buffers are also essential to smooth-
out the inevitable delay variations caused by the network routers. Packet loss can
be a major source of impairments in long distance packet switched networks, and
it is essential to use loss concealment algorithms to alleviate their effects in VoIP
systems. While transmitter based Forward Error Correction (FEC) methods can be
used to correct isolated packet losses, receiver based signal processing algorithms
are generally preferred as they can work independent of the transmitter. The internet
Low Bit Rate Coder (iLBC) is a recent speech coder that tries to mitigate some of
the impairments caused by packet loss by incorporating some of these methods.

This chapter is organized as follows: We begin the next section with a brief
introduction of Voice over IP Networks. Then in Sect. 3.3, we present an overview
of Analysis-by-Synthesis Speech Coding. In Sect. 3.4, we discuss the Multi-rate
Speech Coding. In Sect. 3.5, we present the Scalable Speech Coding and in
Sect. 3.6, Packet Loss Robust Speech Coding is presented. Finally, we conclude
and summarize in Sect. 3.7.

3.2 VoIP Networks

A typical voice call using the Public Switched Telephone Network (PSTN) proceeds
as follows: Analog speech from the near end handset is first encoded at the
originating exchange using the 64 kbps G.711 PCM standard; it is then transported
through a series of 64 kbps Time Division Multiplexed (TDM) circuit switches to
the terminating exchange where it is decoded back to the original analog waveform
and sent to the far end handset. Since the TDM switches in the voice path have small
frame buffers, and are all synchronized to a common reference clock by an overlay
synchronization network, there is virtually no impairments to the switched voice
samples. Therefore the PSTN is ideally suited for voice communications and the
resulting speech quality is considered to be outstanding. However, it is not flexible
for switching traffic with rates other than 64 kbps, and is also not efficient for
transmitting bursty traffic. Moreover, it requires two separate networks: a circuit
switched TDM network for the voice path and a packet switched Signaling System
Number 7 (SS7) network for setting up and tearing down the connections ([1], etc.)
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3.2.1 Overview of VoIP Networks

Compared to the PSTN, the packet switched internet protocol (IP) network natively
supports variable bandwidth connections and uses the same network for both
media and signaling communications. In a VoIP call, speech is first encoded at
the transmitter using one of the voice encoding standards, such as G.711, G.726,
or G.729. The encoded speech is then packetized using the Real Time Transport
(RTP) protocol. After appending additional headers to complete the protocol stack,
the packets are routed through the IP network. They are de-packetized and decoded
back to analog voice at the receiver.

3.2.2 Robust Voice Communication

The packetization and routing processes used in a VoIP system necessitate speech
buffers. The voice packets transported in such a network incur larger delays
compared to the PSTN. They also arrive at the receiver unevenly spaced out in time
due to the variation of the buffering delay in the path routers. This delay variation,
known as jitter, must be smoothed out with a jitter buffer. Furthermore, in a typical
IP network, the intermediate routers drop packets when they are overloaded due to
network congestion. The ensuing gaps in the received packets have to be bridged
with packet loss concealment algorithms. A further consequence of transporting
voice through an IP network is that it is difficult to reproduce the original digitizing
clock at the receiving end, and therefore the frequency of the (independent) playout
clock generally differs from that of the sampling clock. This leads to underflow or
overflow situations at the receive buffer, as the voice samples are written into it at
the original voice digitizing rate but read out at a different rate. Such a clock skew
problem has to be corrected using silence interval manipulation or speech waveform
compression/expansion techniques.

Satisfactory communication of voice using the packet IP network therefore
demands that the effect of the above-mentioned impairments such as delay, jit-
ter, etc. be mitigated using proper signal processing algorithms. Reference [33] deals
with this subject.

3.2.3 Packet Loss Concealment (PLC)

The decoder will apply Packet Loss Concealment (PLC) techniques when packets
are lost or don’t arrive in time for playback. A PLC unit is designed for the decoder
to recognize when a packet has been lost and masks the effect of losing a packer or
having a considerable delay in its arrival.
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We give an example of a PLC unit that can be used with any codec using Linear
Prediction (LP). The traditional PLC unit is generally used only at the decoder, and
therefore the PLC unit does not affect interoperability between implementations.
Other PLC implementations may therefore be used.

The example Packet Loss Concealment unit addresses the following cases:

1. Current and previous frames are received correctly.
The decoder saves the state information (LP filter coefficients) for each sub-frame
of the current frame and entire decoded excitation signal in case the following
frame is lost.

2. Current frame is not received.
If the frame is not received, the frame substitution is based on a pitch-
synchronous repetition of the excitation signal, which is filtered by the last LP
filter of the previous frame. The previous frame’s information is stored in the
decoder state structure.

The decoder uses the stored information from the previous frame to perform a
correlation analysis and determine the pitch lag and voicing level (the degree to
which the previous frame’s excitation was a voiced or roughly periodic signal).
The excitation signal from the previous frame is used to create a new excitation
signal for current frame to maintain the pitch from the previous frame.

For a better sounding substituted frame, a random excitation is mixed with
the new pitch periodic excitation, and the relative use of the two components is
computed from the correlation measure (voicing level).

Next, the signal goes through a LP filter to produce a speech output that makes
up for the lost packet/frame.

For several consecutive lost frames, the packet loss concealment continues in
a similar manner. The correlation measure of the last frame received is still used
along with the same pitch value. The LP filters of the last frame received are also
used again. The energy of the substituted excitation for consecutive lost frames is
decreased, leading to a dampened excitation, and therefore to dampened speech.

3. Current frame is received, but previous frame is lost.
In this case, the current frame is not used for the actual output of the decoder.
In order to avoid an audible discontinuity between the current frame and the
frame that was generated to compensate for the previous packet loss, the decoder
will perform a correlation analysis between the excitation signal of both frames
(current and previous one) to detect the best phase match. Then a simple overlap-
add procedure is performed to merge the previous excitation smoothly into the
current frames’ excitation.

The exact implementation of the packet loss concealment does not influence
interoperability of the codec.
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3.3 Analysis-by-Synthesis Speech Coding

The Linear Predictive Coding (LPC) model of speech generation is based on the
acoustic model of speech generation using the vocal tract excitation.

Now, we briefly introduce the concept of Code-Excited Linear Predictive (CELP)
[77] speech coders. It is the basis of many of the modern speech coders using the
so-called analysis-by-synthesis method [62–65].

3.3.1 Analysis-by-Synthesis Principles

The powerful method of speech coding using analysis-by-synthesis ensures that the
best possible excitation is chosen for a segment of speech. Many speech coders are
based on this method.

In Fig. 3.1, a basic block diagram of an analysis-by-synthesis encoder is shown.
A decoder is embedded in the encoder. This is a closed-loop system. The parameters
are extracted by the encoding, and then they are decoded and used to synthesize the
speech. The synthetic speech is compared with the original speech and the error is
minimized (in a closed loop) to further choose the best parameters in the encoding.
The measures of the minimization include MSE, etc.

3.3.2 CELP-Based Coders

We briefly introduce the CELP methods for low bit-rate speech coding. First we
discuss the limitations of LPC as a way to introduce necessity for CELP coders.

The quality of speech generated by the LPC model depends on the accuracy
of the model. The LPC model is quite simplistic in assuming that each frame of

Input speech
Parameter 

selection and 
encoding Decoder

Error
Minimization

Synthetic 
Speech

Error

Bitstream

Fig. 3.1 Block diagram of an encoder based on the analysis by synthesis principle (incorporates a
decoder)
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speech can be classified as voiced or unvoiced. In reality, there are some brief
regions of transitions between voiced and unvoiced and vice-versa that the LPC
model incorrectly classifies. This can lead to artifacts in the generated speech which
can be annoying.

The fixed choice of two excitations: white noise or periodic impulses is not truly
representative of the real speech generation models especially for voiced speech. In
addition, the nature of the periodic pulses used is not truly periodic, nor are they
truly impulses. This leads to synthetic speech that is not truly natural-sounding.

Natural-ness can be added to the synthetic speech by preserving some of
the phase information which is not typically preserved during the LPC process,
especially for voiced frames. Unvoiced frame phase information can be neglected.
This is important even though the human ear is relatively insensitive to phase
information.

The spectrum generated by exciting a synthesis filter with periodic impulses
(as required for LPC modeling of generation of voiced frames) is one that is
distorted. This is due to a violation of the requirement that the AR model be excited
by a flat-spectrum excitation (which is true of white noise). Use of a periodic
impulse train for excitation however, leads to a distorted spectrum. This is more
noticeable for low-pitch period voiced speech like that of women and children. For
such speech, LPC-based synthetic speech is not very good.

In order to alleviate some of these problems with LPC, the CELP has been
developed. The CELP uses a long-term and a short-term synthesis filter to avoid
voiced/unvoiced frame decision. It also uses phase information by combining the
high quality potential of waveform coding with the compression efficiency of
parametric model-based vocoders.

A vector of random noise is used as an excitation instead of white noise/impulse
train. The Multi-pulse LPC excitation idea has been extended to vector excitation.
However, the excitation vectors are stored at both transmitter and receiver. Only
the index of the excitation is transmitted. This leads to large reduction in bits
transmitted. Vector quantization is required for vector excitation. The CELP speech
coders are a result of this.

The codebook contains the list of possible vectors determined from minimization
of the overall distortion measure such as weighted mean square of the quantization
error. The codebook can be fixed or adaptive.

The basic block diagrams of a CELP-based encoder and decoder are shown
in Figs. 3.2 and 3.3 respectively. Notice that there are two parts of the synthesis
filter: the long-term prediction (LTP) pitch synthesis filter and the short-term
prediction (STP) formant synthesis filter. Also, the error in the synthesized speech is
perceptually weighted and then minimized. Then it is used to determine the proper
index for getting the excitation from the Fixed codebook. The codebook contains a
vector of possible excitations for the synthesis filters. A vector excitation is better
than having to make a hard choice between impulse train and white noise as possible
excitations in the LPC model.

At the decoder, the index is used to determine the proper excitation needed from
the Fixed Codebook. The excitation is multiplied by the gain and then used to excite
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Fig. 3.2 Basic structure of encoder of CELP coders
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Fig. 3.3 Basic structure of decoder of CELP coders

the LTP pitch synthesis filter and the output is then used to excite the STP formant
synthesis filter. An adaptive post filter is used to smooth the output speech.

The STP is the normal LPC filter that models the envelope of the speech
spectrum. Its transfer function is given by

1

A.z/
D 1

1 �
pX

kD1

akz�k

The STP coefficients are generally obtained once per frame using the autocorrelation
equations and transformed to line spectral frequencies (LSF) for quantization and
transmission.

The LTP models the fine structure (pitch) of the speech spectrum. Its transfer
function can be written as

1

P.z/
D 1

1 � ˇz�L
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where “ denotes the pitch gain and L denotes the pitch lag. These parameters are
determined at sub-frame intervals using a combination of open and closed loop
techniques.

The fixed codebook generates the excitation vector that is filtered by the LTP
and STP to generate the synthesized speech signal. The index of the codebook and
the gain is obtained so that a perceptually weighted error between the original and
synthesized speech signals is minimized.

3.3.2.1 Perceptual Error Weighting

The LTP and codebook parameters are selected to minimize the mean square of the
perceptually weighted error sequence. The perceptual weighting filter is given by

W.z/ D A.z/

A .z=�/
D

1 �
pX

kD1

akz�k

1 �
pX

kD1

ak�kz�k

; 0 < � < 1

The weighting filter de-emphasizes the frequency regions corresponding to the for-
mants as determined by the STP filter, thereby allocating more noise to the
formant regions, where they are masked by the speech energy, and less noise to
the subjectively disturbing regions close to the frequency nulls. The amount of
de-emphasis is controlled by the parameter ” (” D 0.75 in ITU-T G729A standard).
A more general weighting filter of the form

W.z/ D A .z=�1/

A .z=�2/

is employed in certain CELP coders (e.g., ITU-T G.729 standard).

3.3.2.2 Pitch Estimation

Determining the accurate pitch period of the speech signal is a difficult task. This
task is often broken up into two stages to reduce computational complexity. First
an open-loop search is performed, over the whole range of possible values of pitch
period to obtain a coarse estimate. The estimate is then refined using a closed loop
(analysis-by-synthesis) technique. Fractional pitch delay estimates are generally
required to synthesize good quality speech.

The open-loop pitch analysis is normally done once per frame. The method of
coarse pitch estimation basically consists of calculating the autocorrelation function
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of the weighted speech signal sw(n) and choosing the delay L that maximizes it.
One problem with this approach is that multiple pitch periods within the range
of values of L might occur if the pitch period is small. In this case there is a
possibility that the first peak in the autocorrelation is missed and a sub-multiple
of the pitch chosen, thereby generating a lower-pitched voice signal. To avoid this
pitch multiples problem, the peak of the autocorrelation is estimated in several
lag ranges (three ranges in ITU-T G729 and G729A standards), and smaller pitch
periods are favored in the selection process with proper weighting of the normalized
autocorrelation values.

Closed-Loop Pitch Search (Adaptive Codebook Search): Significant improve-
ment in voice quality can be achieved when the LTP parameters are optimized inside
the analysis-by-synthesis loop. We first assume that the codebook output is zero.
The pitch delay L is then selected as the delay (in the neighborhood of the open
loop estimate) that minimizes the mean square of the perceptually weighted error.
The optimum pitch gain value is usually obtained by a simple codebook search.

If the pitch period L is greater than the length of the sub-frame over which the
codebook search is performed, the contribution to the synthetic speech for this
sub-frame is only a function of the excitation sequence that was used in the last
sub-frame, which is stored in the LTP buffer, and is not a function of the current
choice of the fixed codebook excitation sequence. With this interpretation, the pitch
synthesis filter can be viewed as an adaptive codebook that is in parallel with the
fixed codebook.

3.4 Multi-Rate Speech Coding

3.4.1 Basic Principles

The objective of speech coding is to represent speech signals in a format that is
suitable for digital communication. Traditionally, the focus in the codec design
has been to minimize bit rate subject to some quality requirements. However, in
practice, the design of speech codecs is primarily governed by application needs
and constraints.

In traditional public switched telephone network (PSTN), a fixed bit rate was
used for each communication direction regardless of factors such as short-term
characteristics of speech signals, transmission channel conditions, or network load.
In contrast, a bit rate can be varied by a function of these factors in modern
communication networks in order to improve performance of speech codecs.

The PSTN was designed to have very low error rates, whereas bit errors and
packet loss are inherent in modern communication infrastructures. Bit errors are
common in wireless networks and are generally handled by channel coding. Packet
loss occurs in IP networks and is typically concealed by a speech codec.
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On the other hand, a variable rate speech codec [67] can be employed to adapt
its bit rate to current channel conditions in order to mitigate bit errors or packet
loss. Variable rate speech codecs can generally be divided into two main categories
[2–4, 58]:

• Source-controlled variable rate codec, where the data rate is determined by the
short-term characteristics of speech signals.

• Network-controlled variable rate codec, where the data rate is determined by
an external control signal generated by the network in response to channel
conditions.

In source-controlled coding, the codec dynamically allocates bits depending
on the short-term characteristics of speech signals, and therefore, the average bit
rate is typically less than the bit rate of the fixed rate codec to achieve a given
level of speech quality. Note that the source-controlled coding scheme can be
combined with the network-controlled coding scheme. The Telecommunications
Industry Association (TIA) selected a variable bit-rate (VBR) codec called QCELP
[5], which was developed by Qualcomm, to increase the capacity of a code division
multiple access (CDMA)-based digital cellular system, and IS-96 algorithm [6] was
standardized in 1994. It was later replaced with the enhanced variable rate codec
(EVRC), standardized by the TIA as IS-127 [7].

In network-controlled coding, the codec responds to an external control signal to
switch the data rate to one of a predetermined set of possible rates. The network-
controlled coding scheme can be viewed as multi-mode variable rate coding scheme
or multi-rate coding scheme, where multiple modes of speech coding are defined
with each mode having a different fixed bit rate.

A special case of multi-rate coding called bit-rate scalable speech coding is
of particular interest and is explained in detail in the next section [Sect. 3.5]. In
bit-rate scalable speech coding, a bit-stream has a layered structure with a core
bit-stream and enhancement bit-streams. Enhancement layers are added to a core
layer to improve speech quality. During transmission of scalable bit-streams, the
bit rate can be adaptively reduced by truncating the enhancement layer bit-streams
according to network conditions. However, a scalable speech codec generally has
lower performance than a multi-rate codec with each bit-rate mode independently
optimized for the highest speech quality.

In 1999, the Adaptive Multi-Rate (AMR) speech codec has been standardised
by European Telecommunication Standards Institute (ETSI) [8–10]. The Third
Generation Partnership Project (3GPP) adopted the AMR codec as the mandatory
speech codec for the third generation WCDMA system in April 1999 [11]. The
wideband version of the AMR codec is referred to as Adaptive Multirate Wideband
(AMR-WB) codec [12] and was standardized in 2001 [13]. The AMR and AMR-
WB are supported in all Universal Mobile Telecommunications System (UMTS)
and Long Term Evolution (LTE) terminals [14]. The next sub-section provides the
brief descriptions of the AMR speech codec, which is one of the most widely used
speech codec in wireless telephony.
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Fig. 3.4 Bit-rate trade-off between speech and channel coding [8]

3.4.2 Adaptive Multi-Rate (AMR) Codec

An overview of the AMR speech codec [10] used for GSM systems is provided here.
The AMR codec is based on the Algebraic CELP (ACELP) coding scheme [15].
The AMR has two channel modes: full-rate (FR) and half-rate (HR). The FR mode
provides a gross bit rate of 22.8 kbps, whereas the HR mode provides a gross bit
rate of 11.4 kbps. The AMR is capable of operating at eight different codec modes
(bit rates): 4.75, 5.15, 5.9, 6.7, 7.4, 7.95, 10.2 and 12.2 kbps. Note that The 12.2 and
7.4 kbps modes are equivalent to GSM enhanced full-rate (EFR) [16] and IS-136
EFR [17], respectively. There are a total of 14 different combinations of operational
choices as shown in Fig. 3.4. A gross bit rate consists of the speech coding bit rate
and channel coding bit rate and each mode has a different distribution of a gross bit
rate between speech and channel coding as illustrated in Fig. 3.4, which results in a
different level of error protection. The codec selects the optimum channel mode and
codec mode to deliver the best combination of speech quality and system capacity
according to the current radio channel and traffic load conditions. The higher bit-rate
mode generally offers better speech quality with lower error protection. In contrast,
the lower bit-rate mode offers lower speech quality with higher error protection. The
channel quality selection and the selection of the optimum channel and codec modes
are performed by link adaptation process [18]. The codec mode can be changed
every 40 ms.
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3.5 Scalable Speech Coding

3.5.1 Basic Principles

Scalable speech coding is a special case of multi-rate coding with a bitstream
structured into layers which consists of a core bitstream and enhancement bitsrteams
as already explained in Sect. 3.4.1. When a scalable speech codec is used, the
encoder can operate at the highest bit rate, but some enhancement layers could be
discarded at any point of communication systems by simply truncating the bitstream
to reduce the bit rate. In contrast to a multi-rate codec, a feedback of channel
conditions and re-encoding are not required for a scalable codec to reduce the bit
rate. Therefore, a layered bitstream offers higher flexibility and easier adaptation to
sudden change of network conditions, which can be exploited to reduce packet loss
rates. In fact, enhancement layers can be used to add various types of functionality to
a core layer, such as speech quality improvement (also called signal-to-noise ratio
(SNR) scalability), bandwidth extension or mono to stereo extension (number of
channels extension) [19].

There are two other advantages [20] for employing scalable speech codecs. First,
scalable coding is a possible solution to cope with the heterogeneity and variability
in communication systems. In fact, the telephone industry has been experiencing
a transition from the PSTN to an all IP network. Currently, links having different
capacities and terminals with various capabilities may coexist. A transmission path
may include both wireless links and fixed links with different capacities. Using a
scalable coding approach, users can receive different quality versions of the same
speech according to their individually available resources and supported capabilities
without the need of feedback.

Secondly, the coexistence of the PSTN and IP networks with a mixture of
wireless and fixed links means that transcoding at gateways is inevitable. In this
situation, the bitstream scalability can be employed to ensure interoperability with
different network infrastructures. In addition, a scalable extension of a widely used
core coder is a very attractive solution to develop and deploy a new enhanced
codec while maintaining interoperability and backwards compatibility with existing
infrastructure and terminals.

In the following section, two examples of the state-of-the-art standardized
scalable wideband codecs, ITU-T G.729.1 and ITU-T G.718, are introduced.

3.5.2 Standardized Scalable Speech Codecs

In this section, two scalable speech codecs which have been standardized within
the “International Telecommunication Union–Telecommunication Standardization
Sector” (ITU-T) are described.
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3.5.2.1 ITU-T G.729.1

ITU-T G.729.1 [21, 25] is a scalable wideband codec. It offers a 12-layer scalable
(embedded) bitstream structure with bit rates between 8 and 32 kbit/s, and is
interoperable with widely deployed G.729 [22–24].

The codec operates on 20 ms frames (called superframes), although the core layer
and the first enhancement layer at 12 kb/s operate on 10 ms frames similar to G.729.
A major novelty was that G.729.1 provides bit rate and bandwidth scalability at the
same time. Bit rates at 8 and 12 kb/s are narrowband. The wideband rates range
from 14 to 32 kb/s at 2 kb/s intervals.

G.729.1 is the first speech codec with a scalable structure built as an extension
of an already existing standard. It offers full backward bitstream interoperability at
8 kb/s with the much used G.729 standard in voice over IP (VoIP) infrastructures.
G.729.1 is one of the best for wideband speech quality, and its quality is preserved
regardless of the access modes and device capabilities thanks to strong robustness
to IP packet losses.

3.5.2.1.1 Encoder and Decoder

The G.729.1 encoder and decoder are illustrated in Fig. 3.5a, b, respectively. By
default, both input and output signals are sampled at 16 kHz, and the encoder
operates at the maximal bit-rate of 32 kbit/s. The input sWB(n’) is decomposed into

Fig. 3.5 Block diagrams of
the G.729.1 encoder and
decoder [25] (a) encoder and
(b) decoder (good frame
only)
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two subbands using a 64-coefficient analysis quadrature mirror filterbank (QMF).
The lower band is pre-processed by an elliptic high-pass filter (HPF) with 50 Hz
cutoff and encoded by a cascade (or two-stage) CELP coder. The higher band is
spectrally folded, pre-processed by an elliptic low-pass filter (LPF) with 3 kHz
cutoff, and encoded by parametric time-domain bandwidth extension (TDBWE).
The lowerband CELP difference signal and the higher-band signal sHB(n) are jointly
encoded by the so-called time-domain aliasing cancellation (TDAC) encoder which
is a transform-based coder. To improve the resilience and recovery of the decoder in
case of frame erasures, parameters useful for frame erasure concealment (FEC) are
transmitted by the FEC encoder based on available lower-band information.

The decoder operates in an embedded manner depending on the received bit-rate.
At 8 and 12 kbit/s the CELP decoder reconstructs a lower-band signal (50–4,000 Hz)
which is then post-filtered in a way similar to G.729; the result is upsampled to
16 kHz using the QMF synthesis filterbank. At 14 kbit/s, the TDBWE decoder
reconstructs a higher-band signal sBWE(n) which is combined with the 12 kbit/s
synthesis in order to extend the output bandwidth to 50–7,000 Hz. From 16 to
32 kbit/s, the TDAC decoder reconstructs both a lower-band difference signal
and a higher-band signal, which are then post-processed (shaped in time domain)
to mitigate pre/post echo artifacts due to transform coding. The modified TDAC
lowerband signal is added to the CELP output, while the modified TDAC higher-
band synthesis is used instead of the TDBWE output to improve quality for the
whole frequency range.

3.5.2.1.2 Robust Encoding Approach

The FEC procedure is derived from the FEC/recovery part of the 3GPP2 VMR-
WB speech coder (in generic full-rate encoding type) [26]. At the encoder, 14 bits
per superframe are used to send supplementary information, which improves FEC
and the recovery of the decoder after frame erasures. The FEC parameters consist
of signal classification information (2 bits), phase information (7 bits) and energy
(5 bits). They are distributed in Layers 2, 3 and 4 respectively, so at to minimize the
impact of bits “stolen” to the cascade CELP, TDBWE and TDAC coding stages.

The FEC follows a split-band approach: in lower band the LPC excitation is
reconstructed and filtered by the estimated LPC synthesis filter; in the higher band,
the decoder is supplied with the previously received TDBWE time and frequency
envelope parameters—the TDBWE mean-time envelope is attenuated by 3 dB after
each erasure.

3.5.2.2 ITU-T G.718

The ITU-T G.718 [28, 69, 71] is an embedded codec comprising five layers; referred
to as L1 (core layer) through L5 (the highest extension layer). The lower two
layers are based on Code-excited Linear Pre-diction (CELP) technology. The core
layer, derived from the VMR-WB speech coding standard [27], comprises several
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Table 3.1 Layer structure for default operation [28]

Layer Bit-rate (kbit/s) Technique Internal sampling rate

L1 8 Classification-based core layer 12.8 kHz
L2 C4 CELP enhancement layer 12.8 kHz
L3* C4 FEC MDCT 12.8 16 kHz
L4* C8 MDCT 16 kHz
L5* C8 MDCT 16 kHz

�Not used for NB input-output

coding modes optimized for different input signals. The coding error from L1 is
encoded with L2, consisting of a modified adaptive codebook and an additional
fixed algebraic codebook. The error from L2 is further coded by higher layers (L3–
L5) in a transform domain using the modified discrete cosine transform (MDCT).
Side information is sent in L3 to enhance frame erasure concealment (FEC). The
layering structure is summarized in Table 3.1 for the default operation of the codec.

The encoder can accept wideband (WB) or narrowband (NB) signals sampled at
either 16 or 8 kHz, respectively. Similarly, the decoder output can be WB or NB,
too. Input signals sampled at 16 kHz, but with bandwidth limited to NB, are detected
and coding modes optimized for NB inputs are used in this case. The WB rendering
is provided for, in all layers. The NB rendering is implemented only for L1 and L2.
The input signal is processed using 20 ms frames. Independently of the input signal
sampling rate, the L1 and L2 internal sampling frequency is at 12.8 kHz.

The codec delay depends upon the sampling rate of the input and output. For WB
input and WB output, the overall algorithmic delay is 42.875 ms. It consists of one
20 ms frame, 1.875 ms delay of input and output re-sampling filters, 10 ms for the
encoder look-ahead, 1 ms of post-filtering delay, and 10 ms at the decoder to allow
for the overlap-add operation of higher-layer transform coding. For NB input and
NB output, the 10 ms decoder delay is used to improve the codec performance for
music signals, and in presence of frame errors. The overall algorithmic delay for
NB input and NB output is 43.875 ms; 2 ms for the input re-sampling filter, 10 ms
for the encoder look-ahead, 1.875 ms for the output re-sampling filter, and 10 ms
decoder delay. Note that the 10 ms decoder delay can be avoided for L1 and L2,
provided that the decoder is prevented from switching to higher bit rates. In this
case the overall delay for WB signals is 32.875 ms and for NB signals 33.875 ms.

3.5.2.2.1 Codec Structure

The structural block diagram of the encoder for WB inputs is shown in Fig. 3.6.
From the figure it can be seen that while the lower two layers are applied to a pre-
emphasized signal sampled at 12.8 kHz as in [12], the upper three layers operate at
the input signal sampling rate of 16 kHz.

To optimize the speech quality at 8 kb/s, the CELP core layer of G.718 uses
signal classification and four distinct coding modes tailored to different classes of
input signal: voiced coding (VC), unvoiced coding (UC), transition coding (TC), and
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Fig. 3.6 Block diagram of the G.718 encoder [28]

generic coding (GC). VC and GC employ the algebraic CELP (ACELP) technology
as in [12]. The VC mode is used for encoding voiced speech frames without
significant variation in periodicity, so relatively fewer bits can be allocated to the
adaptive codebook and more bits to the algebraic codebook than is the case for
GC. The UC mode is used for encoding stable unvoiced speech frames. As no
periodicity can generally be observed in unvoiced speech, the adaptive codebook
is not used, and the excitation is composed of two vectors selected from a small
Gaussian codebook using a fast search. The TC mode is used for encoding frames
following transitions from unvoiced to voiced speech. As frames containing such
transitions are most sensitive to frame erasures due to error propagation into
subsequent frames, the TC mode has been designed to severely limit any prediction
from past frames. This is done in particular by replacing the adaptive codebook
in the beginning of a TC mode frame with a small fixed codebook of eight stored
glottal shapes [29]. Finally, the GC mode is used for encoding frames not classified
otherwise. Independent of the first layer coding mode, the coding error from the core
layer is then encoded using an additional algebraic fixed codebook in the second
layer.

The encoding of L3 and L4 is different for speech-dominant content and music-
dominant content, with discrimination based on the coding efficiency of the CELP
model. For speech dominant content, the whole MDCT spectrum is coded at the
fourth layer level using scalable algebraic vector quantization with bits covering the
lower frequencies sent in L3 and the remaining bits in L4. In the case of music input,
the second layer synthesis is first attenuated to reduce noisiness generated by CELP.
The L3 MDCT coefficients are then quantized only in a selected band [30], where
the band selection is based on the energy of the MDCT coefficients. In L4, the entire
7 kHz bandwidth is coded using an unconstrained pulse position vector quantizer
known as factorial pulse coding (FPC) [31]. FPC is also used systematically in L5,
independent of the input signal.
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3.5.2.2.2 Robust Encoding Approach

The codec has been designed with emphasis on frame erasure (FE) conditions with
several techniques limiting frame error propagation. The TC mode has already
been described in the previous subsection. In addition, the LP filter quantization
in some frames and the excitation gain coding do not use interframe prediction.
To further enhance the speech quality in FE conditions, side information is sent
in L3 to better control the decoded signal energy and periodicity in case of lost
frames. The side information consists of class information for all coding modes.
Previous frame spectral envelope information is also transmitted if the TC mode is
used in the core layer. For other core layer coding modes, phase information and
the pitch-synchronous energy of the synthesized signal are transmitted. The G.718
concealment strategy is different for different classes of speech signal (voiced,
unvoiced, transitions) [32] and depends principally on the signal class of the last
correctly received frame.

3.6 Packet-Loss Robust Speech Coding

Advances and wide acceptance of voice over Internet protocol (VoIP) [33] have been
driving the evolution of telephony technologies in recent years. Voice communica-
tion over IP networks has gained popularity and may become the dominant service
for overall telephony including the wireless telephony in the near future [33, 34].
According to Federal Communications Commission (FCC) [35], the technological
advisory council (TAC) made a number of draft recommendations to the FCC, which
include exploring end dates to the PSTN. On the other hand, the emergence of
VoIP has posed new challenges to development of speech codec. The key issue
of transporting real-time voice packet over IP networks is the lack of guarantee for
reasonable speech quality due to packet delay or loss.

The characteristics of IP network channel is constantly changing. Especially,
packet traffic on public Internet can be unpredictable and its channel is expected to
produce much higher packet delay or loss rate than managed networks. Therefore,
voice communication over public Internet is less reliable. Reliability of VoIP can
be increased by controlling IP networks. The IP multimedia subsystem (IMS) is
a network functional architecture for multimedia service delivery and suited for
controlling the multimedia traffic by utilizing quality of service (QoS). It uses a
VoIP implementation based on session initiation protocol (SIP), and runs over the
standard IP. By relying on managed networks using IMS, packet loss rate is reduced
and bursty loss pattern of IP networks becomes less severe although the packet loss
is still the main cause of performance degradation and a codec that is robust to
packet loss is required. Therefore, the functionality of speech codec that allows its
bit rate to adapt to the current available channel capacity is of significant importance
because the efficient channel usage is maintained by adjusting the congestion of
packet traffic. The RTP control protocol (RTCP) is used along with the real-time
transport protocol (RTP) to provide feedback on the quality of speech transmission
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for VoIP applications. However, RTCP is not always enabled and feedback is slow.
Therefore, the adaptation to the current channel condition without the need of
feedback is the attractive feature of VoIP application due to the requirement of
short time delay for real-time communication. Bit-stream scalability is a promising
technique that makes it possible to adjust the bit rate to the desired value by
truncating the bit stream at any point of a communication system. Low packet delay
can be maintained by adjusting the bit rate of voice traffic. Note that the benefits of
scalability are most enjoyed by the codec used for public Internet. The jitter buffer
management (JBM) can also be used to mitigate the effect of delay jitter and is
achieved by buffering incoming packets at the receiver and delaying their playout
so that most of the packets are received before their scheduled playout times.

Recently, scalable speech coding techniques [20] have become the subject
of intense research, and the need for scalable speech coding has been clearly
recognized by the industry, resulting in new standardization activities. Indeed,
bit-stream scalability facilitates the deployment of new codecs that are built as
embedded extensions of widely deployed codecs. Most of the recent scalable speech
codecs including the wideband scalable speech codec such as ITU-T G.729.1 or
G.718 depend on CELP coding technique for core layer and low bit rate operations.
The CELP technique utilizes the long-term prediction (LTP) across the frame
boundaries and therefore causes error propagation in the case of packet loss and
need to transmit redundant information in order to mitigate the problem. Some
of the simple solutions were proposed in [36], which requires significant increase
in bit rate and delay. Recent approach was introduced in [37] to reduce the error
propagation after lost frames by replacing the long-term prediction with a glottal-
shape codebook in the subframe containing the first glottal impulse in a given frame,
and utilized in G.718. Another approach which depends on low bit-rate redundancy
frames and an LTP scaling parameter can be found in the recent codec called
Opus [38].

The internet low bit-rate codec (iLBC) [39, 40] employs the frame-independent
coding and therefore inherently possesses high robustness to packet loss. When
packets are lost, the effect of speech quality degradation is limited without depend-
ing on transmission of redundant information. Note that this benefit of high
robustness to packet loss comes at the expense of a high bit rate. Due to its inherent
robustness to packet loss, iLBC quickly became a popular choice of speech codecs
for VoIP applications and was adopted by Skype and Google Talk. However, the
lack of flexibility in terms of data rates and its relatively high operational bit rate
compared to CELP-based codecs have overshadowed the advantage of iLBC. In
order to overcome those shortcomings, the rate-flexible solutions for iLBC were
introduced in [41, 42]. The scalable structure was integrated to iLBC in [43, 44].

A wideband codec provides significant improvement over a narrowband codec
in terms of speech intelligibility and naturalness. The transition from narrowband to
wideband telephony is in progress. During this transition, ensuring interoperability
and backwards compatibility with existing infrastructure and terminals is essential.
One of the attractive solutions is to extend the capabilities of existing narrowband
codecs to provide wideband coding functionality by using the bandwidth extension
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technique. The bandwidth scalable structure can be used to extend bandwidth by
adding the enhancement layer to the core layer. Enhancement layers can also provide
speech quality or SNR improvement. Therefore, the wideband support was added
to the narrowband speech codec based on the iLBC in [45, 46] by employing the
bandwidth extension.

We describe the details of the original iLBC coding scheme in Sect. 3.6.1. The
scalable multi-rate speech codec based on the iLBC coding scheme is presented in
Sect. 3.6.2. Where the narrowband and wideband codecs are separately described
and the performance evaluation results are also provided.

3.6.1 Internet Low Bitrate Codec (iLBC)

The IP environment can lead to degradation in speech quality due to lost frames,
which occurs in connection with lost or delayed IP packets.

The iLBC is a speech codec designed for robust voice communication over IP
networks. It was designed for narrow band speech signals sampled at 8 kHz. The
algorithm uses a block-independent linear-predictive coding (LPC) algorithm and
has support for two basic frame/block lengths: 20 ms at 15.2 kbit/s and 30 ms at
13.33 kbit/s. When the codec operates at block lengths of 20 ms, it produces 304
bits per block, which is packetized as in [39, 47] (or fits in 38 bytes). Similarly, for
block lengths of 30 ms it produces 400 bits per block, which is packetized (or fits in
50 bytes). The two modes for the different frame sizes operate in a very similar way.

The algorithm results in a speech coding system with a controlled response to
packet losses similar to what is known from Pulse Code Modulation (PCM) with
packet loss concealment (PLC), such as the ITU-T G.711 standard, which operates
at a fixed bit rate of 64 kbit/s. At the same time, the algorithm enables fixed bit rate
coding with a quality-versus-bit rate tradeoff better than most other algorithms.

The iLBC coder is suitable for real time communications such as telephony
and videoconferencing, streaming audio, archival, and messaging. It is commonly
used for VoIP applications such as Skype, Yahoo Messenger and Google Talk
among others. Cable Television Laboratories (CableLabs) has adopted iLBC as a
mandatory PacketCable audio codec standard for VoIP over Cable applications.

The structure of the iLBC was developed by a company called Global IP
Solutions (GIPS) formerly Global IP Sound (acquired by Google Inc. in 2011). It
uses the Real-time Transport Protocol (RTP) payload format. The ideas behind the
iLBC were also presented at the IEEE Speech Coding Workshop in 2002 [39, 47].

This codec overcomes dependency of Code Excited Linear Prediction (CELP)
codec (e.g. G.729, G.723.1, GSM-EFR and 3GPP-AMR) on previous samples. For
packet-based networks using any of these CELP codecs, packet loss will affect the
quality of the reconstructed signal as part of the historical information may be lost
making it difficult to recover the original signal.

The computational complexity [56] of the iLBC is in the same range as the ITU-
T G.729/A codec. It has the same quality as the ITU-T G.729E in clean channel (no
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Fig. 3.7 Block diagram of the iLBC encoder

packet loss) conditions but its quality exceeds that of the other narrow-band codecs
including G.723.1 and G.728 under packet loss conditions.

Figure 3.7 shows the block diagram of iLBC speech encoder. The basic
framework of iLBC is based on linear prediction (LP) model and block based
coding of LP residual signal using an adaptive codebook (CB) as are used on
CELP-based codecs. The main difference from CELP-based codecs is that the long-
term predictive coding is exploited without introducing inter-frame dependencies.
Therefore, the propagation of errors across frames is avoided when packets are lost,
which makes the iLBC robust to packet loss. This frame independence is achieved
by applying the adaptive CB both forward and backward in time, starting from the
start state. The start state captures pitch information in voiced speech and accurate
noise-like information in unvoiced speech, and enables the operation of the adaptive
CB without depending on the history of the LP residual signal. The adaptive CB
search is repeated three times for refinement.

The benefit of using the start state comes at the expense of a large number of bits
required to represent it accurately for each frame. The start state occupies 43.5 and
56.25 % of encoded bits for 30 ms frame mode and 20 ms frame mode, respectively.

3.6.2 Scalable Multi-Rate Speech Codec

The scalable multi-rate speech codec based on the iLBC coding scheme which
optimized for narrowband input is presented first. The scalable wideband multi-rate
codec is introduced subsequently.

3.6.2.1 Narrowband Codec

The scalable narrowband speech codec based on the iLBC was developed in two
steps: the addition of rate flexibility to the iLBC and the addition of scalability
to the multi-rate codec based on the iLBC. These two types of codecs are
described separately in the following subsections. The performance evaluation of
the developed narrowband codec is provided subsequently.
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3.6.2.1.1 Multi-Rate Codec Based on the iLBC

Since the start state contains the important information as explained in the
Sect. 3.6.1, the encoding process should maintain its waveform as accurately as
possible. The original iLBC uses 3-bit scalar quantizer. However, a time domain
waveform coding is not flexible in terms of the bit rate reduction. A frequency
domain coding technique has potential for reducing the bit rate because of the
nature of the start state. The discrete cosine transform (DCT) is used since it has a
strong energy compaction property, a fast transform algorithm is available and the
start state is completely independent for each frame.

Figure 3.8 shows the block diagram of the start state encoder using the DCT,
which replaces the block for scalar quantization of the start state in Fig. 3.7. The N
samples of the start state x0, : : : , xk are processed by perceptual weighting filter
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wherebA.z/ is a LP analysis filter and the filter W(z) models the short-term frequency
masking curve. The parameter ”s is used to adjust the degree in which the perceptual
weighting is applied. Note that the start state is in the residual domain and weighting
the start state with W (z) is equivalent to employing a perceptual weighting filterbA.z/=bA .z=�s/ in speech signal domain as used in CELP technique. The filter W(z)
is initialized to zero in each frame. Note also that N is one of the parameters in
the proposed codec ranging from 40 to 80 whereas N for the original iLBC is 57
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The DCT coefficients are quantized by the scalable algebraic vector quantization
(AVQ) which is specified in G.718 [28, 75] and implemented by forming 8-
dimensional vectors and using multi-rate lattice vector quantizer [60, 76]. To remain
within the total bit budget, DCT coefficients are divided by a global gain prior to
quantization.

The multi-rate functionality is obtained by allocating different number of bits to
the AVQ. When a small number of bits are available to use for the AVQ, those bits
are allocated to only a limited number of sub-bands.

The low bit rate operation is achieved by decreasing the number of available
bits for the AVQ, which leads to rapid degradation of speech quality. Two schemes
were already introduced in [48] to improve performance at low bit rates. One of the
schemes is to reduce the number of adaptive CB stages and reallocate bits from one
or two of the adaptive CB refinement stages to start state encoding. Another scheme
is to reduce the length of the start state. These schemes sacrifice speech quality at
high bit rates in order to achieve good speech quality at low bit rates.

Longer start state samples can capture more information and have better fre-
quency resolutions. Therefore, high speech quality can be maintained at lower bit
rates by reducing the number of the adaptive CB stages and reallocating a part of
bits to the start state encoding. Especially when the length of the start state is 80,
extra 34 bits can be saved since the first target of sub-frame to be encoded using the
adaptive CB in the original iLBC is completely included in the start state.

3.6.2.1.2 Scalable Multi-Rate Codec Based on the iLBC

The scalable multi-rate speech codec using the iLBC is presented in this sub-section.
The core layer coding error is encoded by employing the modified DCT (MDCT)
and the AVQ. Figure 3.9 shows the block diagram of our proposed scalable multi-
rate iLBC encoder. The input speech signal is encoded by multi-rate iLBC encoder.
The bit-stream produced constitutes the core layer portion of the scalable bit-
stream. The decoded speech signal is obtained during the iLBC encoding process.
The multi-rate iLBC coding error is computed by subtracting the decoded speech
signal from the original speech signal and processed by perceptual weighting filter
We D bA .z=�e/ where bA.z/ is a LP analysis filter the parameter ”e is used to adjust
the degree in which the perceptual weighting is applied. This weighting filter is used
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Fig. 3.9 Block diagram of scalable multi-rate iLBC encoder
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to flatten MDCT coefficients as employed in G.729.1 and G.718. The weighted error
signal is windowed and transformed into MDCT coefficients. Figure 3.10 shows the
power-complementary window for 20 ms frame mode. For the overlap region, the
Kaiser-Bessel derived (KBD) window is employed. To reduce the delay, the overlap
is only 40 samples which correspond to 5 ms while the window size is 320 samples
which is twice the frame size as shown in Fig. 3.10. The effective overlap can be
reduced by padding zeros on each side and the perfect reconstruction is still achieved
as long as the window function satisfies the Princen–Bradley condition [49]. The
overall algorithmic delay for 20 and 30 ms frame mode is therefore 25 and 35 ms,
respectively. The resulting MDCT coefficients are quantized using the AVQ and the
enhancement layer bit-stream is produced.

The block diagram of scalable multi-rate iLBC decoder is shown in Fig. 3.11.
The AVQ parameters of enhancement layer are decoded, transformed into time
domain signal using inverse MDCT (IMDCT), and the weighted overlap-and-add
(WOLA) synthesis is performed to obtain the perceptually weighted error signal.
The weighted error signal is inverse-weighted and processed by the pre-echo
reduction module which performs the same algorithm used in [28] to obtain the
decoded error signal. The decoded speech signal of the core layer is combined with
the error signal decoded from the enhancement layer. The enhanced speech signal
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is passed through the post-filter to produce the output speech signal. The post-filter
used in G.729.1 was modified to be incorporated in the proposed scalable iLBC by
employing open-loop pitch estimation for the integer part of the pitch delay.

The post-processing unit used to enhance LP residual signals in the original iLBC
was modified to be employed without adding any delay and is employed in the core
layer of the decoder to achieve higher speech quality. Note that the post-processing
unit needs to be included in the decoding process in the encoder as well. The post-
processing unit in the original iLBC introduces 5 and 10 ms delay for 20 and 30 ms
frame case, respectively in order to achieve high performance and is employed in the
multi-rate iLBC when enhancement layer is not used. Therefore, the overall delay
for the multi-rate iLBC without enhancement layer is 40 ms when the frame length
is 30 ms, whereas the overall delay for the scalable multi-rate iLBC is 35 ms. When
the frame length is 20 ms, the overall delay is 25 ms for the proposed codec with or
without enhancement layer.

3.6.2.1.3 Performance Evaluation

In order to evaluate the quality of speech produced by the scalable narrowband
multi-rate codec based on the iLBC, the objective tests based on PESQ algorithm
[40, 50] were performed. The speech samples utilized for performance evaluation
are from database in Annex B of ITU-T P.501 [51] pre-published in January 2012.
The source speech was down-sampled to 8 kHz and its speech level was equalized to
�26 dBov using the ITU-T Software Tool Library [52]. The modified-IRS filter and
any mask were not used because the target VoIP applications includes soft phones.

Figure 3.12 shows the MOS-LQO scores of speech codecs as a function of bit
rates. The best performance curves for core layer and core layer plus enhancement
layer of the proposed scalable multi-rate iLBC are shown in Fig. 3.12. It also
compares the proposed codec with G.718, G.729.1 and also with AMR. The
bit allocations for the proposed codec operated at 12.2 kbps are provided in
Table 3.2. Note that proposed scalable codec outperforms non-scalable (core layer
only) configuration at bit rates higher than 10 kbps. The benefit of enhancement
layer can be clearly seen. Interestingly, the performance of proposed codec is
comparable to all the codecs under clean channel conditions despite the fact that
the proposed codec is based on frame-independent coding. Especially, the proposed
codec achieves the same MOS-LQO scores as G.729.1 at 12 kbps and almost the
same scores as AMR at around 5 kbps. Even the performance of G.718 is close to
that of the proposed codec at 12 kbps.

Figure 3.13 shows the performance comparisons of the proposed scalable codec
with G.718, G.729.1, AMR, and the original iLBC operated at around 12.2 kbps
under lossy channel conditions. The Gilbert Elliot channel model [53] is employed
using the ITU-T Software Tool Library [52] to simulate the bursty packet loss such
as the behavior of IP networks. The correlation of the packet loss is set to 0.2. Note
that the bit rate of original iLBC is 13.3 kbps which is more than 1 kbps higher
than other codecs. When packet loss rates are higher than 3 %, the performance
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Fig. 3.12 Performance comparisons of the scalable multi-rate codec based on the iLBC with
G.718, G.729.1, and AMR under clean channel condition

Table 3.2 Bit allocation
when operating at 12.2 kbps

Parameter Bits

LSF 40
Position of start state 3
DCT global gain for start state 7
DCT spectral parameters for start state 144
Adaptive CB index 63
Adaptive CB gain 36
MDCT spectral parameters for enhancement Layer 72
Empty frame indicator 1
Total 366

of AMR is worst and G.729.1 shows the second worst performance. Although the
performance of the proposed codec, original iLBC, and G.718 are close to each
other, the original iLBC achieves the highest scores at packet loss rates higher than
10 % and the proposed codec outperforms G.718 at the loss rates higher than 15 %
and G.718 has the highest MOS-LQO score at 3 % packet loss rate. However when
we take into account the effect of the PLC algorithm, the different conclusion can
be drawn. The PLC algorithm used in G.718 is optimized for itself whereas the PLC
scheme used in the proposed codec and the original iLBC is the informative only
algorithm described in the original iLBC document which can be used in residual
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Fig. 3.13 Performance comparisons of the scalable multi-rate codec based on the iLBC with
G.718, G.729.1, AMR, and original iLBC under lossy channel conditions when operated at around
12.2 kbps

domain for any codec. If the PLC algorithm is optimized for the proposed codec,
higher robustness to packet loss can be expected. Therefore, the proposed codec is
expected to outperform G.718 at most of the loss rates. Please note that the original
iLBC outperformed the proposed codec at high packet-loss rates because the PLC
algorithm used works only for the core layer and the original iLBC operates at the
higher bit rate.

3.6.2.2 Wideband Codec

In this subsection, a scalable wideband speech codec based on the iLBC is
presented.

3.6.2.2.1 Codec Structure

The basic codec structure is a scalable wideband extension of the multi-rate codec
based on the iLBC. Figure 3.14 shows the block diagram of the encoder. The
encoder operates on 20 ms input frames. The wideband input signal is sampled
at 16 kHz and split into two sub-bands using a Quadrature Mirror Filter (QMF)
analysis filter bank. The lower-band signal is first processed by a high-pass filter
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Fig. 3.14 Block diagram of the encoder

with 50 Hz cut-off frequency and encoded by the multi-rate iLBC using 80 start
state samples, which generates the core layer (Layer 1) bitstream. The multi-rate
iLBC coding error is computed by subtracting the decoded speech signal from the
original speech signal and processed by perceptual weighting filter. The weighted
error signal is transformed into DWT coefficients.

The higher-band signal is first spectrally folded and processed by low-pass
filter with 3 kHz cut-off frequency. The low-pass filtered signal is encoded by the
TDBWE and Layer 2 bitstream is generated. The DWT is applied to the coding error
by the TDBWE and the DWT coefficients are obtained.

The resulting two sets of DWT coefficients cover whole wideband of input signal.
Those DWT coefficients are divided into two parts at either 1 or 2 kHz and each part
is separately quantized using the scalable AVQ and Layer 3 and Layer 4 bitstreams
are produced. In order to further improve performance, the quantization errors from
Layers 3 and 4 are encoded by the scalable AVQ, which generates Layer 5 bitstream.

The bitstream produced by the encoder is scalable. The enhancement layers can
be truncated during transmission and speech signal is still decoded with decreased
quality.

Note that the TDBWE algorithm is the same as the one employed in G.729.1
except that a fixed random sequence is used for the TDBWE residual signal in the
decoder so that the TDBWE coding error can be used to improve performance.

The block diagram of the decoder is illustrated in Fig. 3.15. Each layer of
bitstreams is decoded by the respective decoders and the decoded signals are added
to generate the lower-band signal and the higher-band signal. After post-filtering the
decoded lower-band signal and spectrally folding the decoded higher-band signal,
both resulting signals are delay-adjusted and combined using a QMF synthesis filter
bank.
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The DWT can be used to better capture localized waveforms in time domain than
the Fourier-based transforms such as MDCT. The proposed codec utilizes the DWT
to encode the lower- and higher-band coding error which is more likely to consist
of highly non-stationary signals. Therefore, better performance can be expected by
replacing the MDCT with the DWT.

In the proposed codec, we used the orthogonal Daubechies wavelet [54] with
order 4, and three levels of decomposition for lower-band signals and one level of
decomposition for higher-band signals. The wavelet coefficients are divided into
six sub-bands when lower- and higher-band wavelet coefficients are combined. The
delay from DWT is 6.125 ms, which is only 1.125 ms longer than the delay of 5 ms
caused by the MDCT with reduced-overlap window used in Fig. 3.10.

The enhancement unit [73] in linear prediction (LP) residual domain used in the
original iLBC decoder is employed in the multi-rate iLBC, which causes 5 ms delay.
Therefore, the overall algorithmic delay is 40.0625 ms, which consists of 20 ms
for input frame, 10 ms for the enhancement unit in the encoder and the decoder,
6.125 ms for the DWT, and 3.9375 ms for the QMF analysis-synthesis filterbank.

In order to improve performance under lossy channel conditions, the proposed
codec employs the similar PLC algorithm to the one used in G.729.1. In the lower
band, the G.729.1 PLC algorithm is slightly modified so that it works for the
proposed codec in LP residual domain. In particular, some parameters which are
not available in the decoder of the proposed codec are estimated. In the higher
band, whereas the basic function of the TDBWE decoder is to shape an artificially
generated excitation signal according to received time and frequency envelopes,
only the TDBWE mean-time envelope and the frequency envelopes of the previous
frame are used to shape an excitation signal when the frame is not received. The
energy of the concealed signal is gradually decreased for the consecutive lost
frames.
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Fig. 3.16 Performance comparisons of the proposed wideband codec with G.729.1

3.6.2.2.2 Performance Evaluation

In order to evaluate the quality of speech produced by the scalable wideband
multi-rate codec based on the iLBC, the objective tests based on PESQ algorithm
were performed. The speech samples utilized for performance evaluation are from
database in Annex B of ITU-T P.501 [51]. The source speech was down-sampled to
16 kHz and its speech level was equalized to �26 dBov. The modified-IRS filter and
any mask were not used because the target VoIP applications includes soft phones.

Figure 3.16 shows performance comparisons of the proposed wideband codec
using the DWT and the MDCT with G.729.1. The performances of two different
parameter settings indicated as Case 1 and 2 are included for both the DWT and the
MDCT in Fig. 3.16. It is clear that the performances of the proposed codec using
either the DWT or the MDCT are higher than that of G.729.1 at most of the bit rates
except at the low bit rates. The sudden drop of the codec performance at low bit
rates is because a certain level of core-layer performance needs to be maintained. It
is possible for the proposed codec to achieve similar performance to G.729.1 at low
bit rates if lower performance is allowed for the core layer. It is also obvious that
the DWT works better than the MDCT.
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Fig. 3.17 Performance comparison of the proposed wideband codec with G.729.1 under lossy
channel conditions

Note that the proposed codec and G.729.1 have a similar structure as both codecs
are scalable extension of the narrowband codec to allow backward compatibility.
It is remarkable that the proposed codec features the frame-independent coding
scheme to achieve high robustness to packet loss and still performs better than
G.729.1, which is CELP-based codec, at most of high bit rates.

Figure 3.17 shows the performance comparison of the proposed codec operated at
31.35 kbps with G.729.1 operated at 32 kbps under lossy channel conditions where
the MOS-LQO scores are plotted as a function of packet loss rates. The Gilbert Elliot
channel model is employed to simulate the bursty packet loss such as the behavior of
IP networks. The correlation of the packet loss is set to 0.2. We can observe that the
performance of the proposed codec is higher than that of G.729.1 at all packet loss
rates. Both codecs employ the same type of PLC algorithm; however, the proposed
codec needs to estimate some parameters which are not available at the decoder,
including all the frame erasure concealment parameters. Therefore, the performance
improvement due to the PLC algorithm under lossy channel condition should be
much higher for G.729.1. We can say that the frame-independent coding in iLBC
contributed to high robustness to packet loss. If the PLC algorithm is optimized for
the iLBC-based core layer, better performance can be expected for the proposed
codec.
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3.7 Conclusions

Currently a large percentage of speech is communicated over channels using internet
protocols. Most of the challenges presented by voice-over-internet protocols (VoIP)
have been overcome in order to enable error-free, robust speech communication.
However, robustness and scalabaility are two of the most important challenges
remaining.

In this chapter, we presented a thorough discussion of scalable and multi-rate
speech coding for Voice-over-IP networks. We discussed Voice-over-IP networks,
Analysis by Synthesis coding methods, Multi-rate and Scalable methods of speech
coding. We presented (as examples) new narrowband and wideband scalable and
multirate speech codecs designed based on the iLBC, a robust codec deployed on
the Voice-over-iP network channels.
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Chapter 4
Recent Speech Coding Technologies
and Standards

Daniel J. Sinder, Imre Varga, Venkatesh Krishnan, Vivek Rajendran,
and Stéphane Villette

Abstract This chapter presents an overview of recent developments in
conversational speech coding technologies, important new algorithmic advances,
and recent standardization activities in ITU-T, 3GPP, 3GPP2, MPEG and IETF
that offer a significantly improved user experience during voice calls on existing
and future communication systems. User experience is determined by speech
quality, hence network operators are very concerned about quality of speech
coders. Operators are also concerned about capacity, hence coding efficiency is
another important measure. Advanced speech coding technologies provide the
capability to both improve coding efficiency and user experience. One option to
improve quality is to extend the audio bandwidth from traditional narrowband
to wideband (16 kHz sampling) and super-wideband (32 kHz sampling). Another
method is in increasing the robustness of the coder against transmission errors.
Error concealment algorithms are used which substitute the missing parts of the
audio signal as far as possible. In packet-switched applications (VoIP systems),
special mechanisms are included in jitter buffer management (JBM) algorithms
to maximize sound quality. It is of high importance to ensure standardization and
deployment of speech coders that meet quality expectations. As an example of this,
we refer to the Enhanced Voice Services (EVS) project in 3GPP that is developing
the next generation speech coder in 3GPP. The basic motivation for 3GPP to start
the EVS project was to extend the path of codec evolution by providing super-
wideband experience at around 13 kb/s and better quality for music and mixed
content in conversational applications. Optimized behavior in VoIP applications is
achieved through the introduction of high error robustness, jitter buffer management,
inclusion of source-controlled variable bit rate operation, support of various audio
bandwidths, and stereo.
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4.1 Recent Speech Codec Technologies and Features

This section presents key functional blocks in speech coders which apply advanced
technology from today’s perspective. Among them, we can find techniques to
exploit the nature of speech signals allowing different coding methods for active
speech and pauses combined with discontinuous transmission, or even allowing
source-controlled variable bit rate operation. In achieving enhanced quality and
user experience through extended audio bandwidth over traditional narrowband,
bandwidth extension algorithms play a key role. They generate missing higher
bandwidth signal (e.g., wideband) from available narrowband data (blind bandwidth
extension) or exploit the structural dependencies between low and high-bands and
transmit additional information for the high-band as part of the bit stream. The
concept of layered coding is presented as the key for scalable coding. Also packet
loss concealment algorithms are described which are especially important in error
prone environment, typically mobile networks, VoIP and Internet.

4.1.1 Active Speech Source-Controlled Variable Bit Rate,
Constant Bit Rate Operation and Voice Activity Detectors

Voice activity detection (VAD) is a technique employed in speech coders wherein
the presence of speech is detected. The identified speech regions—termed, active
speech—are thereby separated from background noise, or inactive, segments. This
enables discontinuous transmission (also known as DTX), in which transmission is
temporarily cut off in the absence of active speech. During DTX, the speech encoder
and transmitter cease continuous encoding and transmission, but transmits “silence
indicator” (SID) frames resulting in lower average power consumption in mobile
handsets. SID frames are coded at a significantly lower bit rate than active speech
which also enables lower average data rate and higher capacity. These SID frames
are used by the speech decoder/receiver’s comfort noise generation (CNG) modules
to synthesize background noise at the decoded output.

A typical VAD works as follows: the input speech frame (typically 20 ms)
samples are split into frequency sub-bands or critical bands. The signal level and an
estimate of the background noise level in each frequency band are computed. The
background noise level estimate depends on previous VAD decisions and signal
characteristics such as stationarity and tonality. The input signal-to-noise ratio is
compared to an adaptive threshold to compute an intermediate VAD decision.
Threshold adaptation can be done depending on the desired sensitivity and is based
on noise and long term speech estimates. The final VAD decision is calculated by
adding hangover to the intermediate VAD decision. The hangover addition helps to
detect the trailing low energy ending of words which are subjectively important but
difficult to detect.
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A robust VAD (especially on a mobile phone) must be able to reliably detect
speech in the presence of a range of very diverse types of ambient noise and
levels to achieve the balance between capacity and quality. Low signal-to-noise
ratio conditions present particularly difficult detection conditions and increase the
probability of false positives i.e. speech detected as background noise which may
result in speech clipping.

4.1.1.1 Source-Controlled Variable Bit Rate (SC-VBR) Versus
Constant/Fixed Bit Rate (CBR) Vocoders

SC-VBR vocoders select the speech encoding rate and mode based upon the
characteristics of the input speech—e.g., voiced, unvoiced, transient, and stationary.
In particular stationary voiced and unvoiced (fricative) speech can be encoded at
lower bit rates with marginal impact to voice quality as compared to transient or
non-stationary speech. This introduces the capability to operate at multiple capacity
operating points (COPs) each with different active speech average data rates. These
COPs can be used to target varying system capacity while trading off speech quality
gracefully. The encoder capacity operating point can be controlled by the network
based on network congestion or other factors. For example, the EVRC-B vocoder
(a narrowband speech codec used for CDMA2000 systems described in Sect. 4.2.4)
attempts to meet the specified target active speech average data rate by adjusting
the proportion of low rate and high rate active speech frames. This adjustment is
done dynamically by comparing the actual average data rate in a window of past
active speech frames to the target active speech average data rate, and computing an
appropriate fraction of low rate and high rate frames for a window of future active
speech frames.

It is important to distinguish the active speech source controlled variable bit
rate operation from active/inactive speech variable bit rate operation employing
VAD/DTX/CNG mechanisms. In contrast to SC-VBR vocoders, constant bit rate
vocoders like AMR (the 3rd Generation Partnership Project (3GPP) narrowband
speech codec used for GSM/UMTS systems) operate at a fixed rate for every active
speech frame. However they can support multiple such fixed data rates which are
network controlled for dynamic adaptation to network conditions. For example,
the network can switch to using lower bit rates during network congestion to
improve capacity or perhaps to trade off speech bit rate for channel coding to
increase channel protection.

Table 4.1 classifies some of the vocoder standards by active speech variable
versus constant (fixed) bit rate. More details on these Standards Development
Organizations (SDOs) and codecs are presented in Sect. 4.2.
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Table 4.1 Standardized conversational coders and their respective standards developing
organization (SDO), separated by whether they are constant bit rate or active speech variable
bit rate

SDO Coders

Constant bit rate ETSI GSM-FR, GSM-HR, GSM-EFR

3GPP AMR, AMR-WB, EVS (some modes)
ITU-T G.711, G.711.0, G.711.1, G.722, G.722.1, G.722.1C,

G.722.2, G.718, G.719, G.729, G.729.1
IETF iLBC
ISO/IEC MPEG AAC-LD, AAC-ELD, AAC-ELD v2

Active speech 3GPP EVS (some modes)

variable bit rate 3GPP2 EVRC, EVRC-B, EVRC-WB, EVRC-NW,

EVRC-NW2K, VMR-WB
IETF Opus
N/A Speex, SILK

4.1.2 Layered Coding

Today, communication technology migrates toward VoIP networks and enhanced
user experience through wideband, super-wideband, and full-band speech which
extend audio bandwidth over traditional narrowband speech. Earlier narrowband
and wideband coders are incompatible in the sense that a wideband coder does
not extend a narrowband coder. In other words, a decision on audio bandwidth is
needed before encoding. Layered coding allows the feature of bandwidth scalability
which is very useful in the sense that it makes switching the bandwidth possible.
A further aspect is interoperability due to the interconnection of various commu-
nication networks using different speech coding standards. Interoperability issues
can be effectively minimized by layered extension of existing coders rather than
introducing new incompatible coders.

Scalability can be used for several purposes. By building upon a core layer that is
bit stream interoperable with a standard narrowband coder, scalability can be used to
improve the legacy coder while still maintaining interoperability through removing
or ignoring the enhancement layers in the bit stream. Alternatively or in combination
with legacy coder enhancement, layers can be added to the core to improve coding
resolution (i.e., reduce quantization noise), extend the audio bandwidth, or improve
robustness against transmission errors.

Layered coding is a concept in which a core layer is overlaid with multiple
enhancement layers. The core layer provides the minimum number of bits needed
by the decoder for re-synthesizing the speech signal with a minimum (core) quality.
Additional bits to improve quality are then added in layers such that each layer,
starting with the core layer, is embedded in the overall bit stream. Figure 4.1
illustrates the concept of layered coding where a core layer is extended by multiple
enhancement layers.
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A typical situation is that the core layer represents narrowband coding at a certain
bit rate while the enhancement layers add gradual improvements at the expense of
additional bit rate. Improvements provide enhanced user experience due to improved
coding within the same audio bandwidth or due to extended audio bandwidth.
Speech coders implementing this type of layered structure have been standardized
in ITU-T and they will be described in the standardization part of this chapter.

4.1.3 Bandwidth Extension of Speech

Traditional wireline and wireless telecommunication systems carried voice that
was limited to 4 kHz in bandwidth. Termed “narrowband voice”, this band limited
speech signal had quality and intelligibility good enough to sustain a two way
conversation, but lacked the richness and the fullness of natural human voice.
The bandwidth limitation in traditional telephony networks was largely due to
the presence of PSTN sub-systems that are inherently narrowband. As wire-
less voice communication systems continued to evolve, networks moved toward
transcoder-free operation where no PSTN subsystem was involved. Further, the
recent emergence of voice over mobile broadband has enabled end to end voice
transportation without the need for intermediate transcoding. These, coupled with
advances in the electro-acoustic capabilities on wireless devices, have broadened
the scope for employing speech coding techniques that encode speech signals with
bandwidths wider than narrowband voice. Wideband vocoders can encode signal
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bandwidths ranging from 50 Hz to nearly 8 kHz, while super-wideband vocoders
extend the upper range of the coded bandwidth up to 16 kHz.

Coding voice bandwidths wider than narrowband at bit rates that are comparable
to narrowband coders has largely been made possible by bandwidth extension
technologies. The inaccuracies in the representation of the spectral and the temporal
information content at higher frequencies in a speech signal are masked more
easily than contents at lower frequencies. Consequently, bandwidth extension
methodologies manage to encode the spectral regions beyond the narrowband
frequency range in speech signals with far fewer bits than what is used to code
signal content in the narrowband frequency range. In coding the higher frequency
bands that extend beyond the narrowband frequency range, bandwidth extension
techniques exploit the inherent relationship between the signal structures in these
bands. Since the fine signal structure in the higher bands are closely related to that
in the lower band, explicit coding of the fine structure of the high band is avoided.
Instead, the fine structure is extrapolated from the low band. Then the correction
factors that are needed to modify the extrapolated fine structure are then transmitted
from the encoder to enable the decoder to reconstruct speech whose bandwidth is
wider than that of narrowband speech. The correction factors to be transmitted are
chosen to trade off the quantity of bits needed to encode these correction factors
with the need to perceptually mask the inaccuracies in representing the high band
signal content of the signal.

The sections below present an overview of bandwidth extension techniques that
are widely used in various vocoders used for wireless and wireline communications
today.

4.1.3.1 Harmonic Bandwidth Extension Architecture

In bandwidth extension methodologies that seek to extend the bandwidths of signals
coded by a core narrowband vocoder that is based on an LPC paradigm, the high
band excitation signal is derived from the low band excitation in the form of the
excitation signal provided by the narrowband coder. To preserve the harmonic
structure of the low frequency excitation signal in the high frequency excitation
signal, a non-linear function (absolute value) is used [39]. The nonlinear function is
applied after sufficiently over-sampling the narrowband signal in order to minimize
aliasing. Fixed or adaptive whitening can be applied to the output of the nonlinear
function to flatten the spectrum. The main drawback of the nonlinear function is that
for many voiced speech signals, the lower frequencies exhibit a stronger harmonic
structure than higher frequencies. As a result, the output of the nonlinear function
can lead to a high frequency excitation signal that is too harmonic, leading to
objectionable, ‘buzzy’-sounding artifacts [36]. As a solution, a combination of a
nonlinear function and noise modulation is used to produce a pleasantly-sounding
high-band signal.

Figure 4.2 depicts the process that generates the high band excitation from
the narrowband excitation signal. The excitation signal is first run through an



4 Recent Speech Coding Technologies and Standards 81

Pitch lag

LF coded
Excitation
Signal

Anti
sparseness

filter

1. Upsample
2. Absolute Value
3. Downsample
4. Adaptive Whitening

Decide
Mixture Harmonic Gain

Noise Gain

Determine 
signal
envelope

White
Noise

HF
Excitation

Average ACB Gain

Fig. 4.2 Generation of high band excitation signal

all-pass filter. This filter reduces the sparseness that results from encoding the low-
band signal with a sparse fixed codebook, and is intended to be used during unvoiced
speech. Next is the nonlinear function. This module up-samples the signal to 64 kHz,
takes the absolute value, and then down-samples it to 16 kHz. From here, a 7 kHz-
sampled signal is produced using the same high-band analysis filter that was used to
split the input signal in a low and a high band. The result is spectrally flattened with
an adaptive 4th order linear prediction filter, to create the harmonically-extended
excitation signal.

A modulated noise signal is generated by multiplying a unit-variance white
noise signal with the envelope of the harmonically-extended excitation signal. This
envelope is obtained by taking the squared value of each sample, smoothing with a
first order IIR low-pass filter and taking the square-root of each smoothed sample.
The modulated noise and harmonically-extended excitation signals are now mixed
together to create a signal with the right amount of harmonic and noise contents.

4.1.3.2 Spectral Band Replication (SBR)

Spectral Band Replication (SBR) [38] is a bandwidth extension technology that
is often used with perceptual audio codecs such as MP3 and AAC to enable low
bit rate coding of audio signals. SBR codes the high frequency components of
an audio signal by transposing the low frequency components of the signal to the
high frequency region and using a set of adjustment parameters that indicate the
modifications to the transposed low frequency components to match up the high
frequency components of the input signal.

The SBR encoder works in conjunction with a core encoder that encodes the low
frequency portions of an input signal. The input signal is first filtered through a bank
of bandpass filters and the core encoder is invoked to code the low frequency sub-
band(s). Typically Quadrature Mirror Filters (QMF) are employed for decomposing
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the input signal into sub-bands. At the decoder, the SBR decoder transposes the
low frequency components obtained from the core decoder to the higher frequency
range through a simple translation to high frequencies as shown in Fig. 4.3. The SBR
encoder transmits several adjustment parameters which are then used by the SBR
decoder to modify the transposed high frequency components to reproduce the high
frequency components of the input signal. The adjustment parameter extraction
algorithm in an SBR encoder is tuned to the core coder at a given bit rate and
sampling rate. The adjustment parameters include spectral envelopes of the high
band components of the input signal. The temporal and spectral resolution of
these envelopes are chosen according to the characteristics of the input signal and
are adapted every frame. Special considerations are included for transient signals
where the spectral content in the original signal is largely concentrated in the high
band. For such transients, the time-frequency resolution of the envelope is chosen
to represent the non stationary nature of this signal within a given frame. Besides
transients, special cases such as harmonic low bands and noise-like high bands are
handled in SBR.

4.1.4 Blind Bandwidth Extension

Blind Bandwidth Extension (BBE) is the generic term used to describe technologies
that are able to predict from a given band-limited audio signal (e.g., a narrowband
signal with frequency content between 0 and 4 kHz) into an audio signal of higher
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bandwidth (e.g. a wideband signal with content between 0 and 8 kHz), without
requiring the transmission of additional data (hence the term “blind”). The challenge
for these technologies is to generate new frequency components that approximate
the original input such that the resulting signal retains high quality and intelligibility
without introducing annoying artifacts.

4.1.4.1 High Band Model and Prediction Methods

Typically, a BBE system consists of two modules. One module is a bandwidth
extension module, or high band model, which generates the missing frequencies
in the high band based upon the input signal and some additional input parameters.
The other module is a prediction module which attempts to predict those additional
parameters from the input signal. The high band model may, for example, be similar
to that described in Sect. 4.1.3.

The prediction module generally extracts some features from the input signal
(e.g. spectral shape, pitch, gain), and attempts to predict parameter inputs to the
high band model. This can be done using heuristics, or more commonly, statistical
modeling of the joint distribution of the input features and high band parameters.
This statistical modeling can be performed for example using VQ, GMM, HMM, or
other appropriate means.

4.1.4.2 BBE for Speech Coding

One popular application of BBE is within the context of a speech coder. In certain
cases, it may be more efficient for a speech coder to discard parts of the input signal
completely, and then attempt to blindly regenerate them at the decoder, rather than
encoding these parts in a traditional manner. This is particularly true if the frequency
band that is discarded is small, and contains relatively little extra information over
the transmitted content.

AMR-WB [11] uses such a technique: the 16 kHz-sampled input signal contains
frequencies up to 8 kHz, but only the 0–6.4 kHz band is coded. The frequencies
above 6.4 kHz are predicted using a simple model, where a random noise source
is spectrally shaped using a filter extrapolated from the LPC filter used to code the
0–6.4 kHz band, and a gain is predicted using the voicing strength of the 0–6.4 kHz
band. This produces acceptable quality, and allows the coding effort of the ACELP
core to be focused on the perceptually more important part of the spectrum, below
6.4 kHz.

AMR-WBC [40] also uses a similar technique, although in this case a small
number of bits (0.8 kb/s) are transmitted to correct for gain errors made by the
BWE module. The 23.85 kb/s mode of AMR-WB similarly uses 0.8 kb/s for gain
correction.
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4.1.4.3 BBE for Bandwidth Increase

In certain circumstances, it can be desirable to increase the bandwidth of a speech
signal. This might be done either because the increased bandwidth of the resulting
signal might be perceptually more pleasant, or to attempt to minimized distortions
that would occur if the bandwidth of the signal was to vary.

While the world of telephony used exclusively narrowband signals until fairly
recently, there are now practical solutions for wideband and super-wideband speech
communications. Most prominently, the AMR-WB and EVRC-NW wideband
codecs have been commercially deployed on numerous networks, and the EVS
codec currently under standardization by 3GPP will provide super-wideband modes.
However, these are not yet ubiquitously available, and a user is likely to experience
varying levels of bandwidths depending on the network he and his interlocutor are
using, as well as the equipment used by the other side. Bandwidth switching may
even occur during a given call, which is very detrimental [46].

Currently there are a number of bandwidth extension solutions available com-
mercially, but deployment remains limited at this time, and no standards body has
standardized a BBE solution to date. However, with the emergence of speech coders
able to transmit ever increasing speech bandwidths and the detrimental impact
of bandwidth switching on user experience, it is reasonable to expect that BBE
solutions will become more wide-spread, and that deployment of BBE will go hand-
in-hand with that of higher bandwidth codecs.

4.1.4.4 Quality Evaluation

Speech processing or coding systems are usually evaluated by comparing the
original input, which is considered to be the quality reference, with the output.
Typically the output is degraded by the processing, and the difference can be
evaluated using either objective (e.g. PESQ, POLQA), or subjective (e.g. ITU P.800
ACR/DCR, MUSHRA) testing.

Bandwidth extension technology is fundamentally different in that it does not
try to maintain the quality of the input signal, but tries to improve it, and most
importantly, change its nature. As a result, there is currently no objective measure
that can adequately assess the quality of BBE. The objective measures to evaluate a
wideband speech quality that are most prominently used in the telecommunications
industry today require a wideband reference. But in the case of BBE, there is
no wideband reference, only a narrowband reference. It is of course tempting to
start from a wideband signal, down-sample it to narrowband, run the BBE on
the narrowband signal, and compare its output with the original wideband signal.
However this is fundamentally flawed: BBE attempts to generate a wideband signal
with good quality, but it has no way of knowing what the original high band was
like. Therefore, it may well generate a high quality wideband signal, that differs
significantly from the original. Objective measures would score it down because of
the mismatch, even though the quality may be good, and possibly better than another
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Fig. 4.4 Trade-off between bandwidth and artifacts

BBE algorithm that produces low quality speech but a better match to the original.
(Note that objective measures, such as PESQ and POLQA, should not be used for
this purpose, as their specifications explicitly state that they are not necessarily valid
outside their design and training envelope, which does not cover BBE.)

One more difficulty is the terminal frequency response specification. It is
tempting to expect BBE to fit the same Rx frequency response as a wideband codec.
However, there are two problems with this. The first is a fundamental problem that
the transfer function is not defined since the input has a smaller bandwidth than the
output. The second problem is that BBE typically introduces artifacts, and lowering
the energy in the high band can lead to a better compromise between extended
bandwidth perception and speech quality. When comparing BBE algorithms, it is
important to understand this trade-off, and only compare algorithms at the same
tuning point—e.g., either similar artifacts or similar bandwidths. This is illustrated
in Figs. 4.4 and 4.5.

Since one of the main aims of BBE is to reduce the impact of bandwidth
switching, the ITU P.800 DCR is a reasonable way to evaluate BBE algorithm
quality. It is unfortunately a rather complicated and expensive test to run, but in
the absence of suitable objective measures, it is currently the best available test for
BBE evaluation to our knowledge.

4.1.4.5 Encoder Based BBE

Aside from deploying a full new WB codec, or using a BBE technique on top
of an existing NB codec, an approach that has been proposed previously consists
of developing a WB codec which is fully backward compatible with the existing
NB infrastructure [13]. The idea is to take a WB speech signal, and split it into
a NB signal (typically 0–4 kHz), and a high band (HB) signal (4–8 kHz). The HB
signal can be coded efficiently using a small number of bits, as it typically contains
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Fig. 4.5 Misleading performance comparison

much less information than the NB signal, and is highly correlated with the NB.
The NB is coded with a standard NB codec, while the HB information is hidden
in the NB bit stream using watermarking techniques. Watermarking, also known
as steganography, consists of hiding a data stream within another data stream. The
concept itself is very ancient, and has been applied to various media forms, from
text to images, videos, and audio. Here, we are interested in hiding data within a
compressed bit stream. This can be done by constraining the bit patterns that can be
transmitted by a codec, in a way that can be detected and decoded at the receiving
end. Simple techniques exist, such as splitting a quantization table into two half-
tables, and using indexes from the half-table corresponding to the bit of hidden
data that is being sent. Provided the tables are well split, typically so that they both
adequately cover the codeword space, information can be hidden with relatively
little quality loss [13].

This approach can be thought of as Encoder-based BBE (or Tx-side BBE), as
the BBE is performed at the decoder, but using parameters that are transmitted by
the encoder. The advantage over the more common Decoder-based BBE (or Rx-side
BBE) is that the encoder has the original WB input available, hence there is no
risk of wrong parameter estimation. This leads to significantly improved quality,
comparable to existing dedicated WB coders such as AMR-WB or EVRC-NW.

To provide wideband speech, the decoder must receive the same bits that were
sent by the encoder. This may not always be the case in a mobile telephony system.
Indeed, it is the norm that the transmitted packets will be decoded to PCM in the
network, and then re-encoded before being sent to the decoder. As this is inefficient,
and degrades quality, Transcoder Free Operation (TrFO) has been deployed on
some UMTS networks, ensuring that the coded speech bit stream does not get
re-encoded over the network. TrFO is currently deployed on some networks, and
is becoming increasingly more common as it is more efficient in terms of capacity.
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The equivalent for GSM networks, called TFO, is also available in some networks.
Overall, Tx-side BBE provides the same user experience as the current NB codec
in the cases of mobile to wireline calls, or mobile to mobile when TrFO is not
present. However, for mobile-to-mobile calls when TrFO is present, WB speech
will be delivered. Note that it is very possible, and indeed probably best, to combine
Tx-side BBE with Rx-side BBE. They may even share the same high band model,
and only vary in the way the high band parameters are determined. In this case, the
decoded speech signal will always be WB, but with increased quality when both
ends support Tx BBE.

A watermarking codec has some disadvantages over a conventional WB codec.
The fact that it is backward compatible with a pre-existing NB codec puts a lots
of constraints on its design, and therefore it tends to have a slightly lower coding
efficiency than a WB codec free of that constraint, at equal level of technology.
However, in cases where only the watermarking codec can operate (because the
conventional WB codec has not been deployed), then this comparison is irrelevant,
and the comparison should be with the existing NB codec. Another risk is that a
badly designed watermarking scheme may introduce too much noise, and cause
degradation in the legacy case. This is not acceptable, and the watermarking scheme
must be such that its impact on NB quality is negligible. The watermarking approach
however has significant advantages. For example, by not requiring any network
changes, the only cost is that of deploying new software in the handsets, and
ensuring the electro-acoustics work well with WB. Additionally, by not requiring
a new codec to be deployed, it automatically ensures that there will be no problems
interoperating with the other existing codecs and terminals. This has proved to be a
concern when deploying AMR-WB.

Due to the full legacy interoperability of encoder-based BBE schemes, it
is difficult to know what may have been deployed in terminals as proprietary
technology. However, there is at least one known commercially available encoder-
based BBE solution offered by Qualcomm, and marketed under the name of eAMR
(for enhanced-AMR). It has been demonstrated to work well at major industry trade
shows over live commercial networks, confirming that encoder-based BBE can be a
practical solution to help increase the footprint of WB in mobile telephony.

4.1.5 Packet Loss Concealment

Frame erasures or packet loss can have a significant impact to voice quality. Hence
it is critical for voice codecs deployed over wireless communication systems or
voice over packet switched networks to have efficient frame erasure concealment
mechanisms. We address packet loss concealment algorithms used for CELP and
ADPCM based coding next.



88 D.J. Sinder et al.

4.1.5.1 Code Excited Linear Prediction Coders

Code Excited Linear Prediction (CELP) is a technique used on most recent low
bit rate speech coding standards. While the pitch predictive component or the
adaptive codebook significantly contributes toward achieving high speech quality
at low bit rates, it also introduces sensitivity to frame loss due to dependency on
information from past frames. When a frame of speech is lost due to erasure, the
adaptive codebook parameters and other relevant parameters are extrapolated from
the previous frame to synthesize an output at the decoder. But the content of the
adaptive codebook is different from that at the encoder which introduces mismatch
or de-synchronization. This causes the synthesized subsequent good frames which
are received after the lost frame, to deviate from the case if there was no loss.

4.1.5.1.1 Fast Recovery

Fast recovery is an approach where side information with some bit rate overhead is
transmitted to arrest error propagation into future frames, thereby improving perfor-
mance under frame erasures. Side information can include parameters like energy,
frame classification information and phase information. The phase information can
be used to align the glottal pulse position at the decoder to that of the encoder
thereby synchronizing the adaptive codebook content. If side information (such
as the phase information) is not transmitted, the resynchronization is done based
on a predicted pitch value of the lost frame. The prediction is based on past pitch
values and/or the future frame pitch (if available). These techniques are employed in
VMR-WB (3GPP2), G.729.1 (ITU-T) and G.718 (ITU-T) speech coding standards.

There can also be instances where the future frame containing the side informa-
tion is not available at the time of synthesizing the lost frame to avoid adding extra
delay at the decoder. The information on the lost frame which becomes available
on receiving the future frame can be used to correct the excitation (pitch) memory
before synthesizing the correctly received future frame. This helps to significantly
contain the error propagation into future frames and improves decoder convergence
when good frames are received after the erased frame. Waveform interpolation
techniques are necessary to avoid abrupt changes in the pitch contour between the
error concealed lost frame and the memory corrected future frame.

4.1.5.1.2 Loss of Voiced Onsets

Voiced onset frames are typically preceded by inactive or unvoiced speech frames,
which lack the periodic component in the excitation signal. The frame following the
voiced onset relies heavily on the periodic component in the voice onset frame to
encode the waveform. Since the periodic component of the excitation is completely
missing when there is a loss of the voiced onset frame, it can take several frames to
recover and potentially suppress the entire vowel sound.
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Artificial onset construction is a technique used in 3GPP2 VMR-WB codec
where the adaptive codebook of the first correctly received frame following the
voiced onset is synthesized by low pass filtering an impulse or two pulses separated
by an appropriate pitch period followed by regular decoding. Side information from
a future frame containing the position and sign of the last glottal pulse in the erased
frame can also be used for the artificial reconstruction.

Transition coding mode is a technique used in the ITU-T G.718 codec which
alleviates the impact of voiced onset loss by selecting a code vector from a glottal
shaped codebook to encode the adaptive codebook component. This removes the
dependency on the excitation signal from the previous frame thereby eliminating
the primary cause of frame error propagation.

4.1.5.2 Adaptive Differential Pulse Code Modulation
(ADPCM) Based Coders

ADPCM coding is highly recursive. For example, the G.722 coder uses embedded
ADPCM with 6, 5 or 4 bits per sample to code the low band (0–4 kHz) and 2 bits
per sample to code the high band. The quantization scale factor, Moving Average
(MA) and Auto-regressive (AR) prediction coefficients are updated on a per sample
basis. Loss of synchronization between the encoder and decoder needs to be handled
carefully to avoid artifacts due to frame erasures.

Packet loss concealment technique for a typical sub-band ADPCM coder like
G.722 is described as follows. Linear Predictive Coding (LPC) analysis is performed
on the past frame low band synthesis signal. The resulting LP residual signal is used
for Long Term Prediction (LTP) analysis to estimate an open loop pitch delay. Pitch
synchronous period repetition of the past LP residual signal is performed. Signal
classification information is used to control the pitch repetition procedure. The
low band extrapolated signal is obtained by filtering the resulting excitation signal
through the LPC synthesis filter. The extrapolated low band signal is used to update
the ADPCM decoder state memories. Cross fading is also performed to ensure a
smooth transition between the extrapolated samples in the lost frame and the initial
few samples of the first good frame. High band concealment simply consists of pitch
synchronous repetition of the past high band output signal controlled by the signal
classification information.

4.1.6 Voice Over Internet Protocol (VoIP)

The ubiquity of high speed packet switched networks, and the specifically the
Internet, brought with it the possibility of voice communications between any two,
or more, Internet connected devices with suitable audio sound capture and rendering
equipment. Today’s VoIP system are built upon a collection of protocols and stan-
dards enabling successful private and public networks and services. These standards
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include transport protocols such as the Real-time Transport Protocol (RTP) [41], as
well as signaling and control protocols such as Session Initiation Protocol (SIP) [14]
or H.323 [35].

Since this chapter’s focus is on recent speech coding technologies and standards,
the focus in this section is not on these, and many other protocols and standards upon
which VoIP systems are built. Instead, this section will describe recent technologies
for VoIP that are typically integrated into the speech coder itself or possibly realized
through interaction between the coder and the VoIP client, which is the VoIP call
session manager.

VoIP technologies for coders are designed to accommodate idiosyncrasies of
packet switched networks that were rarely, if ever, evident in circuit switched
networks, and that force conventional coder designed for circuit switched networks
to operate outside of their design envelope. The two most impactful characteristics
creating problems for conventional coders are time-varying delay (or, delay jitter)
and bursts of consecutive packet loss. Furthermore, due to the use of VoIP on general
purpose data networks without quality of service (QoS) management, rates of packet
loss—either due to excessive delay or transport loss—can be considerably higher
than typically seen on circuit switched networks. Technologies that compensate for
these characteristics help substantially to maintain voice quality for end users.

4.1.6.1 Management of Time Varying Delay

In packet switched networks, packets may be subjected to varying scheduling and
routing conditions, resulting in time varying transit time from end to end. This time
varying delay, or delay jitter, is not suitable for most conventional speech decoders
and voice post-processing algorithms, which have historically been developed with
the expectation that packets are transmitted and received on a fixed time interval. As
a result VoIP clients utilize a buffer in the receiving terminal to remove jitter.

For conversational voice, mouth-to-ear delay is a key determiner of conversation
call quality. If this delay gets too high, the interactivity of the talkers is impaired,
and users can experience double-talk and overall dissatisfaction. The tolerance for
high delay can be impacted by several factors, such as individual tolerance and
the level of interactivity. ITU-T G.114 [16] provides what is probably the most
widely accepted guideline for the relationship between mouth-to-ear delay and
caller satisfaction. The receiver’s ability to remove delay jitter without adding
excessive delay for buffering is thus a key component to the management of mouth-
to-ear delay and, hence, call quality.

At the same time, the longer the buffer for jitter removal, or de-jitter buffer, the
greater the likelihood that high jitter conditions can be tolerated without dropping
a high percentage of packets due to their arriving too late to be played out. Thus,
a clear trade-off exists between the de-jitter buffering delay and the jitter induced
packet loss at the receiver. A de-jitter buffer can employ several layers of delay
management to achieve the desired operating point.
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First, and simplest, is a fixed length de-jitter buffer. Such a tactic is really
only suitable if the network’s jitter properties are well characterized and known
to be stable over time and varying network loads. Also, a fixed buffer length is only
suitable if a length can be used that provides both satisfactory end-to-end delay and
satisfactory voice quality, with consideration of jitter induced packet losses under
that buffer length.

For most wireless packet data systems carrying VoIP traffic, a fixed length buffer
is not sufficient, and another layer of sophistication is needed. Typically the next step
is to adapt the buffer’s length in between talk spurts (i.e., during silence). This offers
the flexibility to grow the buffering delay only during periods of excessive jitter, but
otherwise keep buffering delay low thereby reducing overall average delay. Also,
by restricting buffer adaptation to silence periods, perceptible quality distortions are
kept to a minimum.

For the same frame loss rate, even lower average delay can be achieved by
dynamically adapting the play-out length of active speech frames. Such adaptation
is known as time-scale modification, or time-warping [37, 47]. By making small
time-scale adjustments to active speech, the receiver can more closely follow the
instantaneous delay jitter changes. Yavuz et al., for example, describe a technique
for time-warping that uses a target frame loss rate to control the adaptation [47].
Liang et al. show in [37] how the three levels of sophistication described here
lead to increasingly closer tracking of instantaneous delay by the receiver, thereby
minimizing the overall average delay.

4.1.6.2 Packet Loss Concealment for VoIP

The packet loss concealment techniques described in Sect. 4.1.5 are, of course,
still relevant and applicable when those same codecs are used on packet-switched
networks. However, the patterns of packet delays and losses, or delay-loss profiles,
are generally different between circuit-switched and packet-switched networks.
Even on packet-switched networks employing QoS mechanisms, multiple consec-
utive packet losses tend to be more common than the comparatively uniformly
distributed losses seen on circuit switched networks. As a result, additional packet
loss concealment technologies are desirable. Further, the de-jitter buffer at the
receive offers an opportunity to employ not only new packet-loss concealment
methods, but also packet-loss protection to prevent the loss at the decoder in the
first place.

When a VoIP decoder needs to receive the next packet in order to produce a
continuous sequence of output speech samples, the next packet must be available
in the de-jitter buffer. If not, a buffer underflow occurs. Conventionally in these
circumstances, the decoder enacts the packet loss concealment mechanisms noted in
Sect. 4.1.5. However, since the de-jitter buffer, which comes with an associated cost
in terms of delay, is a necessary evil for VoIP, it’s presence should be leveraged for
improved underflow prevention and more sophisticated packet loss concealment.
This can be achieved using two techniques— interpolation and redundancy.
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4.1.6.2.1 Interpolation

Interpolation based packet loss concealment (IPLC) replaces the more conventional
extrapolation based loss concealment. During circuit-switched operation, since the
packet sent subsequent to a lost packet is not available at the time of the loss, the lost
information must be extrapolated from the past—usually from the previous frame.
However, in the case of a late packet arrival in a packet-switched network, it is
possible that, due to delay jitter, the subsequent packet has already arrived and is
available in the de-jitter buffer. Therefore, a more smooth reconstruction of the
lost packet can be achieved by interpolating between the previous packet and the
following packet, rather than extrapolating from the past alone.

The benefit of IPLC over extrapolation techniques tends to increase with the
number of consecutive lost packets, owing in part to error propagation that is
characteristic of predictive coders (see Sect. 4.1.5). The longer the period of loss,
the greater the deviation between the predictive parameters extrapolated from the
past at the decoder and the true parameters computed at the encoder when encoding
the first frame after the loss that is received at the decoder. The inherent smoothing
of IPLC can thus reduce the occurrence of pops and clicks when decoding the first
received frame after the loss.

The complication of developing IPLC algorithms comes from the fact that it
is non-trivial to determine when to choose IPLC versus extrapolation. This is
illustrated in Fig. 4.6. As shown at the to portion of the figure, delay jitter may cause
a few consecutive packets to be delayed together, such that when decoding frame
n, IPLC is not a clearly preferred choice because the next available packet may
be several frames away. If conventional extrapolation based concealment is used in
this case for frame n, more of the following frames may have arrived when the time
to decode frame n C 1 arrives, and IPLC still can be used to smooth over the loss.

Fig. 4.6 An illustration of extrapolation and interpolation options for VoIP packet loss con-
cealment. In the top example, extrapolation may still be preferred over interpolation due to the
separation of packets available in the de-jitter buffer, while the reverse is true for the example on
the bottom where only one missing packet separates the available packets



4 Recent Speech Coding Technologies and Standards 93

Fig. 4.7 An illustration of using a redundant copy of frame n in the de-jitter buffer for packet loss
concealment

IPLC, of course, offers no benefit if the subsequent packet is not yet available in
the de-jitter buffer. This is increasingly likely if the sequence of losses is long, and
it is a certainty if the sequence of losses is longer than the buffer. Therefore, another
mechanism is needed to reduce the loss burst length. This is one of the main benefits
of using redundancy, described below.

4.1.6.2.2 Redundancy

For particularly long bursts of buffer underflow, even a small amount of information
about the lost packets can be extremely helpful to conceal the loss. In extreme
cases, a goal may be simply to preserve intelligibility of the decoded speech rather
than completely concealing the loss. To this end, information about a frame can be
transmitted redundantly along with a future frame. This is illustrated in Fig. 4.7.

As discussed above in connection with Fig. 4.6, IPLC over long underflow bursts
is not always optimal. However, if frame nC3 in the top portion of that same figure
also carried information about frame n, as illustrated in Fig. 4.7, then frame n could
be well concealed with parameters from the encoder, making the concealment of
frame n C 1 in the lower portion Fig. 4.6 even higher quality.

There are numerous options for designing redundancy schemes. The redundant
copy can be either a full copy of the original, or it can be a partial copy that includes
just a subset of parameters that are most critical for decoding or arresting error
propagation. In the case of a full copy, it may be desirable to encode it at a reduced
rate, either with the same coding model or an entirely different model better suited
for lower rate encoding.

The mechanism for transmitting redundancy can also vary. At the simplest level,
redundancy can be included at the transport layer (e.g., by including multiple
packets in a single RTP payload). This possibility, for example, is included in
the design of the RTP payload format for AMR and AMR-WB [42]. This has the
advantage that redundancy can be utilized with codecs that were originally designed
for circuit switched operation, such as AMR and AMR-WB.
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Alternatively, and more optimally, redundancy can be designed into new codecs.
Such is the case for EVS, which is being designed with modes that include the option
of transmitting redundancy in-band as part of the codec packet (see Sect. 4.2.3).
Including the redundancy in-band allows the transmission of redundancy to be either
channel controlled (e.g., to combat network congestion) or source controlled. In the
latter case, the encoder can use properties of the input source signal to determine
which frames are most critical for high quality reconstruction at the decoder and
selectively transmit redundancy for those frames only. Even better quality can
perhaps be gained by including varying degrees of redundancy depending on the
criticality as determined from the input.

Another advantage of in-band redundancy is that source control can be used
to determine which frames of input can best be coded at a reduced frame rate.
In this way, some coded frames can be reduced in size in order to accommodate
the attachment of redundancy without altering the total packet size. In this way,
redundancy can be incorporated even within a constant bit rate channel. As
described in Sect. 4.2.3, the redundancy modes of the forthcoming EVS codec uses
this constant bit rate approach.

4.2 Recent Speech Coding Standards

Several standardization organizations have speech coders as their focus. The 3rd
Generation Partnership Project (3GPP) and the 3rd Generation Partnership Project
2 (3GPP2) run projects that are especially relevant for mobile communications
carried on GSM, UMTS, cdma2000, and LTE radio access networks. The work of
the International Telecommunication Union’s Telecommunication Standardization
Sector (ITU-T) targets wireline and wireless coders while the Internet Engineering
Task Force (IETF) focuses on coders for use over the Internet. Traditionally, the
Motion Picture Experts Group (MPEG)—a working group of the International
Organization for Standardization (ISO) and the International Electrotechnical Com-
mission (IEC)—targeted broadcast standards specifying decoder and bit stream
format, but more recently MPEG has conducted activities on conversational coding.
In this section, we present the recent developments of speech coder standards for
conversational applications (telephony) in these organizations.

4.2.1 Advanced Standards in ITU-T

The International Telecommunication Union’s Telecommunication Standardization
Sector (ITU-T) has conducted substantial work in standardization of speech and
audio codecs. In recent years, ITU-T Study Group 16 standardized enhanced
bandwidth codecs like G.722.1 Annex C providing super-wideband capability
and G.719 full-band codec. Besides enhancement in audio bandwidth, ITU-T also
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pioneered in work toward layered coding. Scalable codecs standardized in ITU-T
include G.729.1, G.711.1, G.722, G.722B, G.718, and G.718B. It is common to all
ITU-T coders that they are specified by ANSI C source code which takes precedence
over the textual description; the ANSI C source code is provided in both fixed-point
and floating-point formats.

4.2.1.1 G.729.1: Scalable Extension of G.729

The work to extend the G.729 narrowband coder by bit rate scalability feature started
in ITU-T in 2004. The result of this work is the G.729.1 layered codec [33, 45].

G.729.1 provides bit rate and bandwidth scalability at the same time. G.729.1
is the first codec with an embedded scalable structure designed as an extension
of an already existing standard, the G.729 coder that is widely used in VoIP
infrastructures. Easy integration with existing infrastructure and services required
the use of G.729 core codec while a scalable wideband scheme allows simple
adjustment of bit rate to network or terminal capabilities and multiplexing in
gateways. The extensions add improvement in both quality within narrowband and
in audio bandwidth by adding wideband in layers with incrementally increasing
quality. In addition to bit rate scalability, the codec also includes a DTX operation
which allows encoding of speech at a lower average rate by taking speech inactivity
into account.

The layer structure shown in Fig. 4.8 includes three stages with 12 embedded
layers. Layers 1 and 2 use the CELP algorithm at 8 and 12 kb/s in narrowband.
Layer 2 is bit stream compatible to G.729. Layer 3 works by the Time-Domain
Bandwidth Extension (TDBWE) scheme at 14 kb/s in wideband [12]. The algorithm
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Fig. 4.8 Layered structure of G.729.1 (bits given per 20 ms frame)
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in layers 4–12 is predictive transform coding referred to as Time Domain Aliasing
Cancellation (TDAC) at 14–32 kb/s in wideband. The bit rates from 14 to 32 kb/s
provide an increase in quality.

The G.729.1 codec works on 20 ms frames and has an algorithmic delay of
48.9375 ms. A low-delay mode is also available where the delay is significantly
reduced by 25 ms. The worst case complexity is 35.79 WMOPS for encoder C
decoder. The CELP algorithm ensures good quality for speech, the TDBWE part
allows wideband at reduced bit rate and TDAC provides high quality at wideband for
music and non-speech signals. The quality of the 12 kb/s narrowband mode reaches
the quality of G.711. Maximum wideband quality for all signal types is achieved at
32 kb/s.

4.2.1.2 G.718: Layered Coder with Interoperable Modes

G.718 [24] is a narrowband and wideband layered coder operating at bit rates
between 8 and 32 kb/s. Quality improvements to wideband are offered in 5 layers,
and at the highest layers, G.718 Annex B adds super-wideband audio bandwidth.

G.718 works in narrowband at bit rates of 8 and 12 kb/s and in wideband at 8,
12, 16, 24 and 32 kb/s. The codec operates on 20 ms frames and has a maximum
algorithmic delay of 42.875 ms for wideband input and wideband output signals.
The maximum algorithmic delay for narrowband input and narrowband output
signals is 43.875 ms. A low-delay mode is available at 8 and 12 kb/s with a reduced
maximum algorithmic delay. Worst case codec complexity is 68 WMOPS.

The coding algorithm is based on a two-stage coding structure: the lower two
layers work at 12.8 kHz sampling frequency and are based on CELP coding with
signal-classification in the core layer to optimize coding algorithm per frame.
The higher layers encode the weighted error signal from the lower layers using
overlap-add MDCT transform coding. G.718 achieves a significant performance
improvement and contains AMR-WB (G.722.2) interoperable mode as well.

4.2.1.3 Super-Wideband Extensions: G.729.1 Annex E
and G.718 Annex B

Super-wideband extensions operate at 32 kHz sampling frequency and implement a
scalable coding algorithm to produce a backward compatible embedded bit stream.
The bit stream can be truncated at the decoder or by any component of the
communication system to instantaneously adjust the bit rate to the desired value
with no need for out-of-band signaling.

In case of G.729.1 Annex E [34], the five super-wideband layers result in an
overall bit rate range of 36–64 kb/s, building upon the 32 kb/s G.729.1 coder.
Bandwidth extension coding is used in MDCT domain of the high-band and
enhanced MDCT coding in the low-band. The algorithmic delay is 55.6875 ms.
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G.718 Annex B [25] specifies the scalable super-wideband extension using three
layers on top of the five layers of G.718 at 32 kb/s, at overall bit rates 36, 40, and
48 kb/s. Optionally, the highest layer (8 kb/s) of G.718 can be omitted which results
in the bit rates 28, 32, and 40 kb/s. The super-wideband layers can be applied to the
AMR-WB (G.722.2) interoperable bit rates as well. The coding algorithm is similar
to G.729.1 Annex E.

4.2.1.4 G.711.1: Scalable Wideband Extension of G.711

G.711.1 applies an embedded scalable structure and provides wideband coding by
adding one or two extension layers to the G.711 narrowband core codec working at
64 kb/s [15,19]. One layer extends the bit rate to 80 kb/s and another layer increases
the bit rate further to 96 kb/s. The extensions are designed for low complexity (8.7
WMOPS in worst case) and low delay (11.875 ms with 5 ms frame length). G.711.1
is an embedded coder so the bit stream can be transcoded into G.711 by simple
truncation.

The encoder uses a QMF filter bank to form a low-band and a high-band
signal. While the low-band is processed by traditional G.711 narrowband core
coder at 64 kb/s, the high-band signal passes an MDCT transform and encodes
its coefficients at 16 kb/s (first layer), to give a total bit rate of 80 kb/s. A further
encoding layer at 16 kb/s is available resulting in a total bit rate of 90 kb/s.

G.711.1 may make benefit of the use of the partial mixing method in conferenc-
ing applications. Mixing is performed only partially in the decoded domain such that
the core bit streams are decoded and mixed only while the enhancement layers are
not decoded, hence the name partial. Instead, one active endpoint is selected from
all the endpoints, and its enhancement layers are redistributed to other endpoints
as well.

4.2.1.5 Super-Wideband and Stereo Extensions of G.711.1 and G.722

Introduction of stereo feature in speech communication, especially in combination
with super-wideband coding, aims at improving user experience further. ITU-T
included a layered super-wideband solution and stereo in both G.711.1 and G.722
[27] coders. The super-wideband extension follows the principles of layered coding.
There are two types of stereo extensions, one of them is an embedded solution and
the other one applies two separate mono coders operating on mid and side signals
separately.

As an extension of the G.711.1 wideband coder, Annex D [21] describes a
super-wideband and Annex F a stereo scalable layered algorithm. If Annex F
stereo is applied on the G.711.1 wideband coder, the resulting bit rates are 96
and 128 kb/s; in case Annex F is applied on top of the super-wideband layered
coder (G.711.1 combined with Annex D), five stereo super-wideband bit rates are
provided between 112 and 160 kb/s. The coder configurations demonstrate a high
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flexibility for applications: mono narrowband (G.711), mono wideband (G.711.1),
mono super-wideband (G.711.1 Annex D), stereo wideband (G.711.1 Annex F),
and stereo super-wideband (G.711.1 Annex D and F) are all possible with backward
compatibility to G.711 and G.711.1, and also mono compatibility in case of stereo.

The G.711.1 Annex F [22] stereo coder uses 5 ms frame length and has an
algorithmic delay of 18.125 and 19.0625 ms for wideband and super-wideband,
respectively. Both stereo extension layers work at 16 kb/s. While in the first layer
basic inter-channel stereo information is transmitted, the second layer transmits
inter-channel phase differences of a larger bandwidth, allowing further quality
improvement.

The stereo extension of G.722 in Annex D [29] follows the principles of layered
coding. The stereo bit rates 64 and 80 kb/s apply to G.722 (wideband) and 80, 96,
112, 128 kb/s apply to G.722 Annex B [28] (super-wideband). Hence, the stereo
super-wideband modes are backward compatible with mono wideband and super-
wideband, the stereo wideband modes with mono wideband. The stereo coding
algorithm is similar to G.711.1.

The layered super-wideband extensions of G.711.1 and G.722 are specified
in Annex D and Annex B, respectively. The main characteristics of the coders
including bit rates and complexity and delay figures are summarized in Table 4.2.
High band enhancement, bandwidth extension and MDCT-based coding are main
parts of the extension algorithm.

G.711.1 Appendix IV [23] and G.722 Appendix V [32] describe a coding
method for mid-side (MS) stereo while maintaining interoperability with mono
transmission. The coding principle is the same in case of G.711.1 and G.722. The
left and right input channels are converted into mid and side signals which are then
independently encoded by two parallel running G.711.1 coders (Annex D) or G.722-
SWB coders (Annex B), respectively. The decoder performs the inverse operation.
The LR-MS conversion requires very low complexity.

Table 4.2 Super-wideband extensions in G.711.1 and G.722 coders

Coder G.711.1 G.722

Super-wideband specification Annex D Annex B

Frame size (ms) 5 5

Algorithmic delay (ms) 12.8125 12.3125

Worst case complexity (WMOPS) 21.498 22.76

Wideband bit rate (kb/s) 80 96 56 64

Enhanced wideband bit rate (kb/s) – – 56 –

Special super-wideband enhancement layer bit rate (kb/s) – – 8 –

First super-wideband bit rate (kb/s) – – 64 –

First extension layer bit rate (kb/s) 16 16 16 16

Super-wideband bit rate with first extension layer bit rate (kb/s) 96 112 80 80

Second extension layer bit rate (kb/s) 16 16 16 16

Super-wideband bit rate with first and second extension layers (kb/s) 112 128 96 96
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4.2.1.6 Full-Band Coding in G.719

The G.719 standard [26] provides low-complexity full-band conversational speech
and audio coding in the bit rate range 32–128 kb/s. Full-band coding means the use
of 48 kHz sampling frequency and full audio bandwidth ranging from 20 Hz up to
20 kHz. The frame size is 20 ms and the algorithmic delay is 40 ms due to 50 %
window overlap. The codec worst-case complexity ranges from 15.4 to 20 WMOPS
(increasing with bit rate) where the encoder and decoder use up around the same
amount each.

The encoding algorithm is based on transform coding with adaptive time-
resolution as it depends on the classification of the actual frame. For stationary
frames, MDCT transform is used to obtain a high spectral resolution. For transient
frames, a transform providing high temporal resolution is used. Spectral envelope is
quantized based on norms of bands obtained from grouping the spectral coefficients
and used as input to the adaptive bit-allocation, after adaptive spectral weighting.
Low-complexity lattice-vector quantization is applied to the normalized spectral
coefficients before encoding. A specialty of the decoder is that spectral components
(that were not encoded) are replaced by signal-adaptive noise filling or by bandwidth
extension.

4.2.1.7 G.711.0 Lossless Coding

The motivation behind introducing lossless and stateless compression in ITU-T was
to address some of the application scenarios of G.711 where the silence suppression
must be deactivated. These cases include, for example, high-speed fax or modem,
text telephony, and high linearity for effective network echo canceler. The stateless
method means compressing the signal per frame independently as the original G.711
decoder can recreate the speech signal on frame basis. On this way, errors cannot
propagate from frame to frame. The benefit of lossless coding is that even tandem
(multiple consecutive) coding cannot degrade speech quality.

G.711.0 [18] implements lossless and stateless coding at the same time. In VoIP
situation, coders are negotiated end-to-end. The lossless and stateless design of
G.711.0 allows its use as a compression method on a connection where G.711 has
been negotiated, without further signaling or negotiation.

G.711.0 supports both G.711 �-law and A-law formats and provides frame sizes
typically used in IP networks, i.e. 40, 80, 160, 240 and 320 samples. G.711.0
compresses the signal effectively over 50 % in average (as a function of signal type,
level, background noise, �-law or A-law) at low complexity (less than 1.7 WMOPS
in worst case) and low memory figure.

G.711.1 Annex C [20] specifies the specific wideband extension when the core
codec is the G.711.0 lossless coder.
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4.2.1.8 Packet Loss Concealment Algorithms for G.711 and G.722

The purpose of packet loss concealment (PLC) or frame erasure concealment
algorithms is to hide packets/frames that were lost due to transmission errors.
Since decoding is not possible, the missing portion of the decoded speech signal is
replaced based on past history by a synthetic signal which—ideally—makes the loss
inaudible. The success of the algorithm depends on the length of the lost segment
(short segments can be better filled), on the type of the true speech signal in the
lost segment (stationary type is easier to hide) and on the algorithm qualities. Long
missing segments likely result in a divergence between true and synthetic signal so
muting is inevitable.

In case of G.711, the PLC in Appendix I [17] works in the decoder only. In case
of 10 ms frames, a circular history buffer of 48.75 ms is filled with good frames and
is used for pitch period calculation and waveform extraction in case of erasures. PLC
comes into action when a frame is lost: the pitch is detected first and then during
the first 10 ms segment the last 1.25 pitch period is repeated by overlap-add method.
For longer erasures, longer pitch period have to be used to obtain necessary quality.

G.722 Appendix III [30] specifies a high-quality PLC algorithm in the decoder.
Periodic waveform extrapolation is used to regenerate the lost segments mixing
with filtered noise according to good signal characteristics before the loss. The
extrapolated signal is split by QMF filter bank and the two sub-band ADPCM
encoders are passed to update the states of the sub-band ADPCM decoders.
Additional processing improves the quality of the fill. Long missing segments are
successively muted.

G.722 Appendix IV [31] describes a low-complexity PLC method where the
decoder low-band and high-band signals are conserved at good frames. Erasures
are extrapolated in the low-band using linear-predictive coding (LPC), pitch-
synchronous period repetition and adaptive muting. In the high-band, the previous
frame is repeated pitch-synchronously with adaptive muting and high-pass post-
processing. For more details, we refer to Sect. 4.1.5.

4.2.2 IETF Codecs and Transport Protocols

4.2.2.1 Opus Codec

Opus is a speech and audio codec which is capable of operating at a wide range
of bit rates starting from 6 kb/s for narrow band mono speech to 510 kb/s for high
quality stereo music with algorithmic delay ranging from 5 ms (2.5 ms frame size)
to 65.2 ms (60 ms frame size). This flexibility enables different types of applications
ranging from conversational speech (real time VoIP) to network music performances
or lip sync at live events.
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4.2.2.1.1 Core Technologies

Opus combines core technologies from Skype’s speech focused SILK codec and
Xiph.Org’s low latency CELT codec based on the Modified Discrete Cosine
Transform (MDCT) to handle music signals. The SILK codec which is based on
linear prediction coding has been significantly modified to integrate with Opus and
is primarily used to handle narrowband and wideband speech up to �32 kb/s. The
CELT based core is most efficient on fullband audio (48 kHz sampling rate) and less
efficient on low bit rate speech.

Opus also has a hybrid mode which uses SILK and CELT simultaneously for
super-wideband and fullband audio bandwidths. In the hybrid mode, the cross over
frequency between the two cores is 8 kHz. The SILK layer codes the low frequencies
up to 8 kHz by re-sampling the signal to wideband while the CELT (MDCT) layer
codes the high frequencies above 8 kHz. The MDCT layer discards the signal below
8 kHz to ensure there is no redundancy in the coding. Opus supports seamless
switching between all of its different operating modes.

Audio Bandwidths and Bit Rate Sweet Spots

The Opus codec supports input and output of various audio bandwidths as defined
in RFC 6716. The available configurations are summarized in Table 4.3. For a frame
size of 20 ms, Table 4.4 shows the bit rate “sweet spots” for the Opus codec:

Variable and Constant Bit Rate Modes of Operation

Opus is inherently designed and is more efficient in the Variable Bit Rate (VBR)
mode of operation which is the default. However it also supports a constrained VBR
mode which simulates a “bit reservoir” and a true CBR mode without a bit reservoir
to impose additional buffering delays. The true CBR mode has lower quality than
the VBR modes.

Table 4.3 Opus audio bandwidths and effective sample rates

Abbreviation Audio bandwidth (kHz) Effective sample rate (kHz)

NB (narrowband) 4 8

MB (medium-band) 6 12

WB (wideband) 8 16

SWB (super-wideband) 12 24

FB (Fullband) 20 48

Table 4.4 Optimal bit rate
ranges for coding different
bandwidths with Opus

Bit rate range (kb/s) Configuration

8–12 Narrowband speech

16–20 Wideband speech

28–40 Fullband speech

48–64 Fullband mono music

64–128 Fullband stereo music
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Mono and Stereo Coding

Opus supports both mono and stereo coding within a single stream. The reference
encoder tries to make the optimal decision on the number of audio channel (mono or
stereo) based on a bit rate versus quality trade off. For example it maybe desirable to
encode a stereo input stream in mono since the bit rate maybe too low for sufficient
quality. The stereo decoder outputs identical left and right channel upon decoding
a mono bit stream and a mono decoder averages the left and right channels upon
decoding a stereo bit stream. The number of audio channels can also be specified by
the application in real-time.

Packet Loss Resilience

Inter-frame correlation (or prediction) is an important tool to enable good audio
quality at low bit rates. However this introduces sensitivity to packet loss (as
discussed in Sect. 4.1.5). In Opus, the long term prediction (LTP) filter state is down-
scaled which in turn reduces the LTP prediction gain only in the first pitch period
in the packet. Consequently, the first pitch period has higher residual energy and
requires extra bits to encode. The downscaling factor is quantized to one of three
values and enables an efficient trade-off between increased bit rate caused by lower
LTP prediction gain and improved error resiliency.

Forward Error Correction (Low Bit Rate Redundancy)

Low bit rate encoded versions of perceptually important frames such as voiced
onsets or transients are added to subsequent frames to assist in recovery from packet
loss. This utilizes the presence of a de-jitter buffer at the receiver for Voice over
Packet Switched networks. If the main description of a packet is lost, the decoder
can poll the de-jitter buffer to check for future packets carrying low bit rate (i.e.,
coarser) descriptions of the lost packet for synthesis.

4.2.2.2 RTP Payload Formats

The IETF also specifies packaging formats for codec bit streams transported by
the real-time transport protocol (RTP) commonly used by VoIP applications and
networks. These so-called payload formats sometimes describe multiple packaging
formats for each codec, along with a description of information that can be included
in a header of the codec payload. Also typically defined in these documents are
media types and session description protocol (SDP) parameters and attributes that
can be used by clients to negotiate mutually agreeable codec capabilities regarding
supported bit-rates, bandwidths, redundancy, and other modes of operation. The
details of these formats are outside the scope of this chapter, but the interested reader
is encouraged to visit the IETF Datatracker [1], where a simple search for a codec
name will reveal the corresponding IETF RFC payload format document.
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4.2.3 3GPP and the Enhanced Voice Services (EVS) Codec

3GPP (3rd Generation Partnership Project) is successful in running original
development and standardization on the area of speech coding for telephony.
Before the creation of 3GPP in 1998, ETSI standardized the GSM full-rate (FR)
and half-rate (HR) coders, later the enhanced full-rate (EFR) coder that made calls
in GSM possible. These coders are single fix rate coders designed especially for
the GSM system. More flexibility was possible by the introduction of the adaptive
multi-rate (AMR) coder which operates in narrowband and provides 8 bit rates in
the range of 5.9–12.2 kb/s. AMR not only enhances flexibility in GSM through bit
rate adaptation but AMR is also the mandatory coder in the 3G (UMTS) system. The
introduction of the adaptive multi-rate wideband (AMR-WB) coder [11] improved
the quality significantly through the increased audio bandwidth up to 50 Hz to
7 kHz. AMR-WB includes 9 fix bit rates in the range of 6.6–23.85 kb/s where the
12.65 kb/s mode achieves good wideband quality [44]. AMR and AMR-WB were
tested for use in packet-switched networks [43].

Enhanced Voice Services (EVS) is the conversational voice codec currently being
standardized in 3GPP SA4 for use in next generation voice services primarily
over LTE and LTE-A. This work item is slated for completion in Rel-12. When
standardized, the EVS codec will be the successor to AMR and AMR-WB coders
that are extensively used in 3GPP systems for voice services today. The goals of
EVS as envisaged in the TSG-SA TR 22.813 [2] include improved user experience
by the introduction of super-wideband (SWB) coding of speech, enhanced quality
and system efficiency for narrowband (NB) and wideband (WB) speech services
compared to codecs used in pre- Rel-12 voice services, enhanced quality for mixed
content and music in conversational applications, robustness to packet loss and delay
jitter, and the inclusion of a few modes that are backward interoperable to the current
3GPP AMR-WB codec.

The EVS codec will be the first conversational codec that can encode voice and
other audio signals with a super-wideband bandwidth (50 Hz–16 kHz) at bit rates as
low as 13.2 kb/s. Super-wideband coded speech sounds closer to the original human
voice compared to WB and NB speech and therefore provides a sense of presence.
Likewise, for similar bit rates as current 3GPP conversational codecs (AMR and
AMR-WB), the EVS codec is expected to offer better quality for NB and WB inputs.
Equivalently, the EVS codec is expected to provide improved coding efficiency
by coding NB and WB signals at lower bit rates for similar quality as AMR and
AMR-WB. The EVS codec is also expected to improve the coding quality for music
and mixed content compared to current 3GPP conversational codecs (AMR and
AMR-WB) and thus enable improved user experience during in-call music, music
on hold etc. The improved robustness to packet loss and delay jitter is expected
to lead to optimized behavior in IP application environments like MTSI within the
EPS. Further, the bit rates for the EVS coder are selected to optimally utilize the
LTE transport block sizes chosen for AMR-WB.

Table 4.5 shows a comparison of features of AMR, AMR-WB and the EVS
coders.
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Table 4.5 Comparison of AMR, AMR-WB and EVS

Feature AMR AMR-WB EVS

Sampling rates 8 kHz 16 kHz 8 kHz, 16 kHz, 32 kHz,
48 kHz

Audio bandwidth Narrowband (NB) Wideband (WB) NB, WB and Super
Wideband (SWB)

Intended input signals Voice Voice Voice & general audio
(music, ring tones, &
mixed content)

Bit rates (kb/s) 4.75, 5.15, 5.9, 6.70,
7.4, 7.95, 10.2, 12.2

6.6, 8.85, 12.65,
14.25, 15.85, 18.25,
19.85, 23.05, 23.85

5.9, 7.2, 8, 9.6, 13.2,
16.4, 24.4, 32, 48, 64,
96, 128

Mono/Stereo Mono only Mono only Mono and Stereo

Frame size 20 ms 20 ms 20 ms

Algorithmic delay 20 ms / 25 ms 25 ms Up to 32 ms

4.2.4 Recent Codec Development in 3GPP2

Following on the success of the widely adopted Enhanced Variable Rate
Codec (EVRC) for narrowband voice [3], 3GPP2—the standardization body for
CDMA2000—standardized EVRC-B in 2007. EVRC-B’s source controlled variable
rate coding techniques offered network operators the flexibility of multiple capacity
operating points to dynamically manage network loads [4], but it was still limited
to narrowband coding only.

Also in 2007, 3GPP2 adopted EVRC-WB, which included a split-band wideband
coding mode at an average active speech bit rate of 7.42 kb/s along with narrowband
modes that are interoperable with EVRC-B [5, 36]. EVRC-WB introduced a highly
efficient coding of the high band (3.5–7 kHz) using a linear prediction coding (LPC)
scheme combined with non-linear processing of the low band excitation to derive
the excitation for high band.

More recently, 3GPP2 combined the WB mode of EVRC-WB with seven NB
modes from EVRC-B, resulting in the 2009 standard EVRC-NW (Narrowband-
Wideband) [6]. The merging of these codecs gives operators the flexibility to deploy
wideband voice services while preserving the ability to dynamically switch to higher
capacity narrowband modes to accommodate higher network loads.

In the most recent permutation (completed in 2011), 3GPP2 has introduced
EVRC-NW2K—a new service option that replaces one of EVRC-NW’s narrowband
coding modes with a 2 kb/s coding mode that is intended for use in Extended Cell
High Rate Packet Data (xHRPD) systems [8]. One application of such systems
is integrated satellite and terrestrial networks that may benefit from significant
radio access coverage improvement in exchange for tight bandwidth constraints for
transmission of voice over satellite links, while still providing high quality wideband
over terrestrial radio links [9]. The operating modes of the five codecs in the EVRC
family, including this latest standard, are summarized in Fig. 4.9.
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Fig. 4.9 The coding modes of the EVRC family of codecs

The new 2 kb/s coding mode in EVRC-NW2K is achieved using the CDMA
rate set one quarter-rate packet (40 bits/packet for source coding) as the maximum
packet size. In addition to the noise-excited linear prediction (NELP) coding mode
for unvoiced speech from EVRC-B, it also uses a slightly modified version of the
quarter-rate prototype pitch prediction (QPPP) from that codec. QPPP is a waveform
interpolation based coding for stationary voiced segments. In this mode, prototype
pitch periods are extracted from the end of each frame and efficiently encoded using
a representation of the discrete Fourier series magnitude spectrum. Phase, which
is not encoded with the QPPP prototypes, is extrapolated from the previous frame
at the decoder [7]. The whole frame excitation is reconstructed at the decoder by
interpolating between the two prototypes.

In addition to NELP and QPPP, EVRC-NW2K’s 2 kb/s mode also uses a
quarter-rate transient encoding mode. This mode handles voiced transients not
well encoded by QPPP as well as plosives, up-transients (typically unvoiced-to-
voiced transitions), and down-transients (typically voiced-to-unvoiced transitions).
The transient coding also seeds the QPPP mode which requires both a previous pitch
prototype (from the previous frame) and phase information [7].

4.2.5 Conversational Codecs in MPEG

ISO/IEC MPEG focused traditionally on broadcast coders, recent activities include
the standardization of conversational codecs as well. Low Delay Advanced Audio
Coding (AAC-LD) and Enhanced Low Delay Advanced Audio Coding (AAC-
ELD) represent recent developments on this area. The AAC-ELD family consists
of AAC-LD, AAC-ELD and AAC-ELD v2 [10].
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These codecs make use of perceptual audio coding used in advanced broadcast
audio coders and it combines with low encoding delay at 15. . . 32 ms (depending
on bit rate and bandwidth) that is necessary for conversational applications. Specif-
ically, AAC-LD features a minimum encoding delay of 20 ms at 48 kHz sampling,
the three modes of AAC-ELD have 15, 15.7 and 31.3 ms delay, respectively, and
AAC-ELD v2 has a typical algorithmic delay of 35 ms. The codec can operate in a
fixed frame length mode (20 ms) where each packet is equal in size, or in a fixed bit
rate mode where the average bit rate within a limited time frame is constant. AAC-
ELD supports various audio bandwidths up to fullband (20 kHz upper bandwidth)
and also stereo capability. For stereo, AAC-LD offers natural sound for speech and
music at bit rates above 96 kb/s, AAC-ELD improves the audio quality down to
48 kb/s. Below this bit-rate, down to 24 kb/s, AAC-ELDv2 is the best choice to keep
the audio quality high. For mono applications, a similar relationship between AAC-
ELD and AAC-LD at half bit-rate can be expected, whereas AAC-ELD v2 delivers
identical audio quality to AAC-ELD.

The core structure of AAC-LD is directly derived from AAC. The time domain
input samples are transformed into a frequency domain representation by an MDCT
filter bank. In order to efficiently exploit psychoacoustic effects of frequency and
time domain masking, the 960 sample size of the MDCT analysis window utilizes
a frequency resolution of 50 Hz and a time resolution of 10 ms. Temporal Noise
Shaping allows the AAC-LD coder to exercise control over the temporal fine
structure of the audio signal and improve the time resolution. Intensity Coupling
and Mid/Side Stereo increase the coding gain for a stereo channel pair compared
to encoding two mono channels separately. Perceptual Noise Substitution (PNS)
uses a parametric representation of noise-like frequency bands for an efficient
transmission.

AAC-ELD can be used at three different operating modes. AAC-ELD core can
be used in all applications where high bit rates are available (96 kb/s and higher
for stereo). A Low Delay MDCT filter bank replaces the MDCT filter bank used in
AAC-LD. With this delay-optimized filter bank, AAC-ELD operates with a lower
delay compared to AAC-LD. AAC-ELD with SBR mode is the most flexible mode
of AAC-ELD as it covers a wide range of bit rates (approximately 32–64 kb/s per
channel) and sampling rates. The delay stays constant over a wide range of bit
rates enabling dynamically switching of bit rates. This mode uses a delay-optimized
version of Spectral Bandwidth Replication (LD-SBR) technology. LD-SBR allows
the reduction of overall bit rate while maintaining excellent audio quality. The lower
part of the audio spectrum is coded with AAC-ELD core, while the LD-SBR tool
encodes the upper part of the spectrum. LD-SBR is a parametric approach that
exploits the harmonic structure of natural audio signals. It uses the relationship
of the lower and upper part of the spectrum for a guided recreation of the whole
audio spectrum of the signal. The third operating mode, AAC-ELD with Dual Rate
SBR is especially useful for applications with lower data rates, down to 24 kb/s
per channel, at an increased delay compared to the other two modes. In this mode,
the AAC-ELD core is coded with half the sampling frequency of the overall signal
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which maximizes quality at low bit rates. Note that AAC-ELD standard-compliant
decoders can operate in any of the three modes, which allows the designer of the
encoder side to freely choose the mode that best fits the application scenario.

AAC-ELD v2 is ideal for low bit rate stereo operation. It integrates a parametric
stereo extension to achieve stereo performance at bit rates close to mono operation.
This parametric extension is based on a two-channel version of Low Delay MPEG
Surround (LD-MPS). Instead of transmitting two channels, the LD-MPS encoder
extracts spatial parameters to enable reconstruction of the stereo signal at the
decoder side; the remaining mono down mix is AAC-ELD encoded. The LD-MPS
data is transmitted together with the SBR data in the AAC-ELD bit stream. The
AAC-ELD decoder reconstructs the mono signal and the LD-MPS decoder recreates
the stereo image. Typically, the bit rate overhead for the stereo parameters is around
3 kb/s at 48 kHz. This allows AAC-ELD v2 to code stereo signals at bit rates
significantly lower than using discrete stereo coding.
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Chapter 5
Ensemble Learning Approaches
in Speech Recognition

Yunxin Zhao, Jian Xue, and Xin Chen

Abstract An overview is made on the ensemble learning efforts that have emerged
in automatic speech recognition in recent years. The approaches that are based on
different machine learning techniques and target various levels and components
of speech recognition are described, and their effectiveness is discussed in terms
of the direct performance measure of word error rate and the indirect measures of
classification margin, diversity, as well as bias and variance. In addition, methods
on reducing storage and computation costs of ensemble models for practical
deployments of speech recognition systems are discussed. Ensemble learning for
speech recognition has been largely fruitful, and it is expected to continue progress
along with the advances in machine learning, speech and language modeling, as
well as computing technology.

5.1 Introduction

Speech recognition is a challenging task. Producing a spoken message requires
conceptualizing what to say based on a semantic memory, formulating words
and their ordering according to a language syntax, and articulating the message
following a phonetic and articulatory planning. Speech data that are produced from
the multi-tiered process are not i.i.d., the temporal dynamics of speech sounds and
their spectral energy distributions are doubly stochastic and subject to rich variations
in speaking style, speech rate, speaker differences, acoustic background, etc. It is
obviously difficult to learn any single model in any component of the system to
fully accommodate the structures and variations of such complex speech data, and it
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is more so when the amount of supervised speech training data is often very limited
for an application task. These difficulties make ensemble learning very attractive
for speech recognition, as it offers a conceptually simple framework to synthesize a
more accurate and robust learner from some simple learners that are trainable from
limited data. The hierarchical nature of speech also allows ensemble learning for
speech recognition to appear in different system components and at different levels
of decision making.

Over the years, many efforts on ensemble learning have emerged in the speech
recognition field. The reported methods share certain commonalities with those in
machine learning, mostly with the ensemble generation mechanisms of boosting,
bagging, and random forest, but they invariably carry special traits pertaining to
their choices on the system components where ensemble learning is performed
and on the system level where diversity integration is applied. Generally speaking,
diversity integration has appeared in every possible level of decoding search; while
the ensemble learning methods are mainly focused on acoustic modeling, they are
also applied to language modeling and speech features, and in some cases ensemble
acoustic and language models are combined.

In this chapter, an overview is made on the ensemble learning approaches that
have emerged in automatic speech recognition in recent years in connection with
those of the machine learning literature. In Sect. 5.2, a background is given to the
ensemble learning methods in machine learning with the focus on classification.
In Sect. 5.3, the key concepts and components of state-of-the-art speech recognition
systems are described. In Sect. 5.4, ensemble learning for speech recognition
is discussed in terms of opportunities of injecting diversity or randomness into
different components of a speech recognition system as well as possibilities for
combining multiple models or systems at different levels of decision making. In
Sect. 5.5, ensemble learning methods in acoustic modeling is categorized and
examined in detail. In Sect. 5.6, a light discussion is given to some ensemble
methods in language modeling. In Sect. 5.7, performance enhancing mechanisms
of ensemble methods in acoustic modeling are analyzed. In Sect. 5.8, methods
for streamlining ensemble acoustic models to improve computation and storage
efficiencies are discussed. In Sect. 5.9, a conclusion is made.

5.2 Background of Ensemble Methods in Machine Learning

5.2.1 Ensemble Learning

Ensemble learning has become an important and active research area over the
past decade, covering the full spectrum of supervised learning for classification
and regression, unsupervised learning for data clustering, and semi-supervised
learning [25, 50, 84]. For classification, an ensemble learner or classifier builds a
set of classifiers and combines their predictions for each test sample. A convenient



5 Ensemble Learning Approaches in Speech Recognition 115

assumption that has commonly been made is that the data samples are independent,
and thus the classification deals with isolated objects, which simplifies problem
formulation and analysis. Numerous studies on a variety of machine learning tasks
have provided ample empirical evidences that the predictions made by combining
multiple classifiers are often more accurate than the predictions made by the
individual classifiers.

Learning an ensemble classifier encompasses learning the component classifiers,
often referred to as base classifiers, and their combining weights. An ensemble
classifier may be heterogeneous or homogeneous, where in the former the base
classifiers are of mixed types, for example, a decision tree, an artificial neural
network, and a k-nearest neighbor classifier, while in the latter the base classifiers
are of the same type, such as all being decision trees. Homogeneous ensemble
construction methods of boosting and bagging have been heavily studied in the
machine learning community.

5.2.2 Boosting

Boosting is a sequential method for ensemble construction, where the base clas-
sifiers are learnt one after another from reweighted data. Specifically, the base
classifiers that have been learnt at the current stage are combined to classify the
current version of weighted training data, and the prediction errors are utilized to
reweight the data distribution so as to emphasize the misclassified data samples in
learning the next base classifier. Among a variety of boosting algorithms, AdaBoost
is the most influential [36], which has been shown to increase classification margins
on training data and thus decrease generalization errors on unseen data with the
boosting iterations. Schapire [65] established the notion that weak learners that are
just slightly better than random guess can be combined into a strong learner through
boosting. A statistical estimation based analysis revealed that Adaboost is equivalent
to forward stage-wise additive modeling [39].

Boosting algorithms can be categorized by the number of classes that it discrim-
inates being binary or multiple, by its output being discrete or real, and by the loss
function that it employs in the ensemble optimization. In the discrete case, such
as AdaBoost, the outputs are class labels alone, while in the real case, such as
Real AdaBoost, the outputs provide information of the class labels as well as the
confidence scores of the class predictions [34]. A variety of loss functions have
been investigated that has led to variants of boosting algorithms. The exponential
loss as employed in AdaBoost increases the weights of the misclassified samples
exponentially with their negative classification margin sizes, making AdaBoost
sensitive to noise [39]. To decrease noise sensitivity, the loss function can be made
to increase with the negative margin size at a smaller rate, such as the Binomial
deviance loss in FilterBoost [3].
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5.2.3 Bagging

Bagging is a parallel method of ensemble construction, where the base classifiers
are learnt independently from bootstrap-sampled datasets. For a training set D
with N samples, bootstrap sampling generates K sampled datasets Di, i D 1, � � � , K,
by randomly sampling D with replacement N times such that jDij D D. K base
classifiers are learnt from the Di’s independently, and their predictions on unseen
data are aggregated to form the ensemble prediction [4]. Because each Di would
randomly miss on average 36.8 % of samples in D, the base classifiers are different
and potentially complementary to each other in decision making. In order for the
limited differences among the Di’s to generate large differences among the base
classifiers, the classifiers should be sensitive to small changes in training data.
Friedman and Hall [33] analyzed the effects of bagging on the parameters of
ensemble classifiers and showed that linear parameters were not improved while
the variance and higher-order terms of the parameters were reduced, implying that
nonlinear classifiers were good candidates for bagging. The performance of bagging
improves with the number of base classifiers or the ensemble size generally, and it
converges eventually [84]. Subagging is similar to bagging but it uses subsampling
(random sampling without replacement) to generate sampled datasets of a smaller
size than the given dataset [2].

5.2.4 Random Forest

Since classification trees are unstable, they are commonly used in bagging.
A generalization in randomization has led to the celebrated ensemble classifier
called Random Forest. Random Forest as described in Breiman [5] includes two
aspects of randomization in training the base classifiers: randomizing data through
bootstrap sampling, and randomizing features of node splits by randomly selecting
a subset of features for each node. Random forest covers a variety of ensemble
methods that use random tree base classifiers. For example, the method of Random
Subspace randomly chooses a subset of features for each base tree construction
without randomizing node splits [41]; Randomized C4.5 randomly chooses a node
split from n-best split candidates for each node of a base C4.5 tree [24]; Rotation
Forest employs different feature rotations that are derived from principal component
analyses on randomly sampled data to randomize the base tree classifiers [63]. It is
worth mentioning that the last three methods all use the full training set D to train
the base tree classifiers, and the randomness of these trees are derived from the
feature manipulations.
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5.2.5 Classifier Combination

How to combine the base classifiers to achieve accurate ensemble predictions is an
important issue. Existing approaches include static classifier combination, dynamic
classifier selection, stacking, etc.

In static classifier combination, the combining weights for the base classifiers are
determined in the training stage and held fixed. Assuming that C classes are to be
discriminated, the output of the ith classifier can be represented by the vector

hi .x/ D �
h1

i .x/ h2
i .x/ � � � hC

i .x/
�T

(5.1)

where T stands for vector transpose. If the classifier produces class labels, then hi(x)
is in the form of 1-of-C code. For example, hj

i(x) D 1 and hk
i (x) D 0 for k ¤ j, when

the class of x is predicted to be j. If the outputs are class scores, then hi(x) is a
real vector. For example, for an artificial neural network, hi(x) is a vector of class
posterior probability estimates. For an ensemble with K base classifiers, its output
vector becomes
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where the ˛i’s are combining weights, and the ensemble prediction is commonly

j � D arg max
1�j �C

KX
iD1

˛i h
j
i .x/ (5.3)

In a simple classifier combination, the weights are uniform and the decision rule
is majority voting. Bagging falls into this case. Otherwise, the combining weights

are estimated, for example, by making the elements 1
K

KX
iD1

˛i h
j
i .x/ approximate the

class posterior probabilities p(jjx). It is worth noting that the combining weights in
AdaBoost are exponential functions of the error rate of the base classifiers, which
are learnt sequentially with the base classifiers to minimize classification errors of
the ensemble classifier.

In dynamic classifier selection, one or a subset of base classifiers are selected for
predicting the class of a sample x, with the objective of including the classifiers that
are likely to be correct for x and avoiding those that are likely to be wrong. To do
so, the accuracies of the base classifiers on individual training samples are tracked,
and the base classifiers that perform well for the training samples that are similar to
x are selected.

In stacking, the outputs of the base classifiers on training samples are used as
features to train a meta-classifier [76]. The meta-classifier is nonlinear in general,
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and thus stacking provides a more general way for classifier combination. To avoid
overfit, cross-validation is usually used to separate the training data into those for the
base classifiers and those for the meta-classifier. Once the meta-classifier is learnt,
the base classifies can be re-trained by the full set of training data. Beside of this
commonly adopted two-level stacking, classifiers can also be stacked on top of each
other to form a vertical structure of multiple layers [76], offering a way for deep
learning.

5.2.6 Ensemble Error Analyses

The error reduction mechanism of an ensemble learner over its base learners
has been analyzed for classification and regression, and the consensus is that
the diversity among the base learners contributes to the performance gain of an
ensemble learner.

5.2.6.1 Added Error of an Ensemble Classifier

Tumer and Ghosh [72] analyzed the classification errors that are added to the
intrinsic Bayes error for the ensemble learner that uses a simple soft voting, and
they derived the relation between the expected added error of the ensemble learner
Eadd(H) and the average expected added error of K unbiased base learners Eadd .h/:

Eadd.H/ D 1 C .K � 1/ ı

K
Eadd.h/ (5.4)

where ı is the average pair-wise correlations among the base leaners. This relation
shows that reducing the correlations ı among the base leaners reduces the added
error of the ensemble, and when the base learners are uncorrelated, i.e., ı D 0,
Eadd(H) becomes a factor of K smaller than Eadd .h/. It is also seen from Eq. (5.4)
that accurate base classifiers and large ensemble size both contribute to a good
ensemble performance.

5.2.6.2 Bias–Variance–Covariance Decomposition

In regression, a learner h is trained from a training set D to approximate a target
function f. The squared approximation error can be decomposed as a bias term plus a
variance term when taking an expectation with respect to the probability distribution
of D:

E
h
.h � f /2

i
D bias.h/2 C var.h/ (5.5)

with bias(h)2 D (E[h] � f )2 and var(h) D E[(h � E[h])2].
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For an ensemble of K base learners using a simple averaging rule, i.e.,

H D 1
K

KX
iD1

hi , its approximation error can be decomposed as a bias term plus

a variance term plus a covariance term [74]:

E
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.H � f /2

i
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K
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. This decomposition reveals that the bias term of

the ensemble learner is the average bias of its base learners, the variance term of the
ensemble learner is a factor of K less than the average variance of its base learners.
The opportunity of error reduction for the ensemble learner comes from the reduced
variance, as well as negative covariances among the base learners.

5.2.6.3 Error-Ambiguity Decomposition

For an ensemble regression learner using a soft averaging, i.e., H.x/ D
KX

iD1

˛i hi .x/,

with ˛i � 0 and
KX

iD1

˛i D 1, its approximation error can also be decomposed into the

two terms of error and ambiguity [48]:
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where the first term is the expected squared error of the base learners, and the second
term is the expected squared difference of the base learners and the ensemble, called
ambiguity. The non-negativity of the ambiguity term indicates that the ensemble
error is no larger than the average error of the base learners.
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5.2.7 Diversity Measures

In binary classification, several diversity measures have been derived from the pair-
wise agreement and disagreement patterns of the base classifiers’ outputs, including
Kappa-statistic, correlation coefficient, disagreement measure, etc.; diversity can
also be measured directly from the correct and incorrect classification counts of
the base classifiers as in Kohavi–Wolpert variance and Interrater agreement, or from
the base classifiers’ output class counts on each sample as in Entropy [50].

Information-theoretic diversity measures have been proposed recently to decom-
pose the mutual information between an ensemble classifier’s predictions and
the ground truth classes into a relevance term and a diversity term [8]. The
relevance term is a sum of mutual information between the individual classifier’s
predictions and target classes, which measures the accuracy of the base classifiers.
The diversity term is the conditional mutual information among the base classifiers
given target class labels minus the unconditional mutual information among the base
classifiers. The mutual information diversity measures are attractive, but computing
the diversity term requires the joint probability distributions of the base classifiers
which are difficult to estimate for large ensembles and large number of classes.
Zhou and Li [83] described a simpler formulation and an approximation method for
information-theoretic diversity measure.

Although diversity is important to the accuracy performance of an ensemble
classifier, maximizing a diversity objective explicitly in constructing an ensemble
classifier showed mixed results [49]. Tang et al. [70] discussed deficiencies in the
existing diversity measures, listing non-monotonic relations between diversity and
minimum classification margin of an ensemble, lacking of regularization in diversity
based objectives which could cause overfit, and correlations between the accuracy of
the base classifiers and the diversity among them. Overall, finding the right diversity
objectives for ensemble construction remains an open problem at the current time.

5.2.8 Ensemble Pruning

A large ensemble classifier may take up a lot more memory space and computation
time than a single classifier does if its base classifiers are not simple. It may
be of practical interest to trim an ensemble by keeping only the accurate and
diverse base classifiers and prune away the rest of them. In an ensemble classifier
whose combining weights carry the importance of its base classifiers, the base
classifiers with insignificant weights can be pruned. The base classifiers can also
be clustered and only the representative classifiers of the different clusters are
retained for the pruned ensemble classifier. Along this line, a base classifier can
be represented by a vector whose elements are its classification output labels on a
training samples as in Eq. (5.1), and K-means clustering can then be performed on
the vectors of all base classifiers and training samples to generate the representative
classifiers [51]. The base classifiers can also be ranked by their accuracy or pair-wise
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diversity, and those ranked at the top are included in the pruned ensemble, such
as in Reduced error pruning and Kappa pruning [54]; or alternatively, a pruned
ensemble can be initialized with the best base classifier, and additional base
classifiers are added to it sequentially to maximize the diversity between the new
base classifier and the pruned ensemble classier, as in Inter-rater agreement pruning
and Complementariness pruning [55].

5.2.9 Ensemble Clustering

Since commonly used clustering methods are sensitive to a number of factors, such
as initial condition, distance measure, hyper-parameters, clustering algorithm, or
data samples, different base clusterings can be readily generated by varying these
factors. To reconcile different clusterings into an ensemble clustering, a variety of
methods can be used, such as performing average-linkage agglomerative clustering
via an average similarity matrix of the base clusterings [32], or representing base
clusterings in a graph and performing graph partition [69]. Overall, an ensemble
clustering captures multifaceted data associations better than a single clustering
does, and the data structure discovered from an ensemble clustering is more robust
than that from a single clustering.

5.3 Background of Speech Recognition

5.3.1 State-of-the-Art Speech Recognition System Architecture

A block diagram of a generic state-of-the-art large vocabulary continuous speech
recognition (LVCSR) system is shown in Fig. 5.1. The system consists of two
function modules: front-end processing and decoding search, and three knowledge

Acoustic
model

Language
model

Lexicon

Decoding      
search

Front-end 
processing

Speech 
input

Feature 
sequence

Word sequence
hypothesis

Fig. 5.1 Block diagram of a generic speech recognition system
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sources: acoustic model, language model, and lexicon [45, 61]. The front-end pro-
cessing module processes a microphone output to extract speech from background
or segment speech of different talkers, as well as to perform feature analysis to
generate a sequence of speech feature vectors O D o1o2 : : : oT which may be further
transformed for normalization or dimension reduction. The decoding search module
utilizes the system knowledge to optimize the word sequence hypothesis W* for the
acoustic evidence O by maximizing the posterior probability of W, i.e.,

W � D arg max
W

P
�
W
ˇ̌
ˇO	

D arg max
W

P.W /P
�
O
ˇ̌̌
W
	 (5.8)

The word sequence probability P.W / D
nY

iD1

P.wi jw1; � � � ; wi�1/ is computed

by the language model with w0 a fixed sentence-start symbol. The likelihood
of a speech observation sequence is commonly approximated as P.OjW / �
max

s1s2���sT

QT
tD1 p.ot jst /P.st jst�1/, with the state sequence s1s2 � � � sT determined by

the Viterbi algorithm according to word prediction probabilities, word pronuncia-
tions, and topology of subword unit HMMs, and the frame likelihood scores p(otjst)
and the state transition probabilities P(stjst-1) computed by the acoustic model.

5.3.2 Front-End Processing

The major task of this module is extracting features from speech. Speech features
are commonly analyzed from short-time frames on the scale of 20–30 ms per frame
at the rate of about 100 frames per second. A feature vector ot represents the speech
spectral characteristics of the t-th frame. Generally, a discrete Fourier spectrum of
a frame is subject to the mel or critical band frequency warping as well as the log
or cubic root energy compression to emulate the frequency and energy sensitivity
of the human ear. A variety of feature representations exist, and two commonly
used ones are Mel Frequency Cepstral Coefficients (MFCC) and Perceptual Linear
Prediction Cepstral Coefficients (PLP-CC). To capture speech temporal dynamics in
the features, for each frame, some difference of the adjacent frames’ speech spectra,
referred to as the � feature, and difference of the differences, referred to as the
�� feature, are used with the current speech spectrum to form a feature vector for
the frame. Alternatively, for each frame, speech spectra of several adjacent frames
can be spliced as a long vector, and discriminative or orthogonal transformation
based dimension reduction are applied to produce a feature vector. Another type of
speech feature, referred to as tandem feature, consists of multiple-layer perceptron
(MLP) output posterior probabilities of subword units such as phone units. The MLP
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is trained to minimize subword classification errors by taking a block of spectral
feature vectors as input at each time.

5.3.3 Lexicon

A simple lexicon defines the pronunciation of each vocabulary word by a sequence
of phonemes. Because word pronunciations vary with dialect accents, speaker
idiosyncrasies, and heteronyms, etc., a lexicon may use multiple pronunciations
for some words, with the frequency of each pronunciation variant represented by
a weight. While phoneme based lexicons have been widely used in conjunction
with acoustic modeling of context-dependent phone units, the approach is often
considered too rigid for co-articulations and reductions in spontaneous speech.
There are exploratory efforts on modeling word pronunciations by asynchronous
streams of multiple articulatory features [18, 52], as well as using longer subword
units such as demi-syllables [77].

5.3.4 Acoustic Model

For several decades, the dominant approach to speech acoustic modeling has been
hidden Markov modeling (HMM) of context-dependent phone units. In the com-
monly used triphone models, the context of a phone unit includes its immediately
preceding phone and following phone. An HMM describes the stochastic properties
of a phonetic sound in two layers: a hidden layer that describes the time dynamics
of the feature vectors through a finite-state Markov chain, and an observation layer
that describes the statistical variations of the observed feature vectors through state-
dependent probability density functions (pdf) that are commonly Gaussian mixture
models (GMM):

fs .ot / D
IX

iD1

cs;i N .ot I �s;i ; †s;i / (5.9)

where s denotes a state, I denotes mixture size, with the mixture weights cs,i � 0 and
IX

iD1

cs;i D 1:

To facilitate training triphone HMMs, the feature sequence of each training
speech utterance is first segmented into phone states via a Viterbi alignment. Viterbi
alignment maximizes the posterior probability of the phone state sequence given
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a feature sequence by using an initial acoustic model and the word transcript of
the utterance as well as the pronunciations of these words. Since there are many
triphones while the amount of training data is often limited for a given task, the
triphone states are clustered into a smaller number of tied triphone states to facilitate
reliable parameter estimation for the state-dependent observation pdfs.

Phonetic decision trees (PDT), like those implemented in the HTK toolkit [42],
are commonly used for triphone state clustering. For each phone unit P and state s,
a PDT is constructed to cluster the triphone samples PL � P C PR at the state s.
A set of questions, Q D fq1, � � � , qLg, is predefined for node splits, with each question
concerning a certain property of the left and right phone neighbors PL and PR.
At each node, a Gaussian density is used to fit the data, questions are asked to
try out all tentative two-way splits of the triphone samples, and the split that
results in the largest likelihood gain is taken. Starting from the root node, node
split proceeds iteratively, where a node becomes a leaf when its sample count or
the likelihood gain from a further split falls below predefined thresholds. For each
leaf node, a GMM is estimated from the triphone samples clustered in the node
by the Expectation-Maximization (EM) algorithm. After the PDT-based state tying,
the GMM–HMM parameters of the tied-states are further refined by Baum–Welch
based maximum likelihood estimation (MLE) to optimize model-data fit, or by
discriminative training (DT) to minimize word or phone error rates, where in either
case several iterations are run over the feature sequences of training speech.

Another approach to speech acoustic modeling is to use the phone state posterior
probabilities of MLP in place of the GMM likelihood scores in HMM, referred to as
MLP–HMM hybrid. In recent years impressive progresses have been made in this
direction by using deep neural network produced posterior probabilities of context-
dependent phone states in MLP–HMM hybrid, referred to as DNN–HMM. DNN–
HMM has enjoyed large word error reductions over GMM–HMM in some tasks
[17], and deep learning has become an important direction for acoustic modeling.

5.3.5 Language Model

The prevalent approach to language modeling for speech recognition has been the
statistical n-gram model, where the prediction of the ith word given the past i � 1
words, i.e., P(wijw1 � � � wi � 1), is approximated by P(wijwi � n C 1 � � � wi � 1), that is,
different word histories with the same recent n � 1 words are considered equivalent
for predicting the next word. While n-gram language models effectively characterize
the short-range lexical co-occurrence frequencies in a language, it is deficient
in capturing long-distance word dependencies that may occur in sentences of
complex syntax structures. To model more complex language phenomena, syntactic
and semantic language models have been developed for speech recognition in
combination with n-gram models. Coupled with the progresses in deep learning,
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recurrent neural network (RNN) based language modeling which provides smooth
word-prediction probabilities and uses long word histories has shown a promising
potential for speech recognition [58].

5.3.6 Decoding Search

In large vocabulary continuous speech recognition, searching for the optimal word
sequence hypothesis W* requires intensive computation and huge memory space,
and thus fast and memory efficient decoding search algorithms are needed. One
commonly used algorithm is one-pass time-synchronous Viterbi beam search based
on a lexical prefix tree. The search expands words, phonemes, and HMM states
while covering the input speech feature sequence from left to right. The log
language and acoustic model scores of different search paths, log p(w1 � � � wi) and
log p(o1 � � � otjw1 � � � wi), are accumulated during the search path expansions, and
upon reaching the end of the speech input, the path with the largest log P(W, O) is
backtracked to give the 1-best word sequence hypothesis.

In order to apply better models to improve word accuracy without significantly
slowing down decoding search, a two-pass search strategy called lattice rescoring is
often adopted. In this approach, simple or moderate acoustic and language models
are used to generate a word lattice consisting of weighted word arcs in a directed
acyclic graph, where the weights are the acoustic and language model scores of the
associated words. Since the search space in a word lattice is much smaller than that
in the first-pass search, complex acoustic or language models can be used to refine
the scores on the word arcs, and word sequence hypothesis can be improved by
searching for the best path on the rescored lattice.

Another search strategy is to convert a word lattice into a linear graph called
confusion network (CN) via a time-constrained clustering of the word arcs in a
word lattice. A CN consists of a sequence of bins, where each bin has a set of
aligned words, and each word has its posterior probability of occurrence in the bin
that is computed from the word lattice by using a forward–backward algorithm. The
best word sequence hypothesis is obtained from a CN by picking from each bin the
word candidate with the highest posterior probability. An advantage of the CN is
attributed to its direct minimization on word error rate, in contrast to Viterbi search
or lattice rescoring that minimize word string error rate.

Unlike the dynamic search space expansion in Viterbi time-synchronous beam
search, weighted finite state transducer (WFST) precompiles system knowledge
of language model, lexicon, and acoustic model into a large network. Generally
speaking, WFST gives faster decoding speed but uses more memory space than the
one-pass Viterbi search does, and WFST has become increasingly used in speech
recognition systems.
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5.4 Generating and Combining Diversity
in Speech Recognition

5.4.1 System Places for Generating Diversity

There are ample opportunities for injecting diversities or randomness in a speech
recognition system. Along this line, researchers have devised novel methods for
almost every component of the speech recognition system depicted in Fig. 5.1.
Likewise, the diversity, for example multiple models, can also be exploited at almost
every level of speech recognition. Here, the various options that have been explored
are synopsized, with the emphasis on acoustic modeling.

5.4.1.1 Front End Processing

Different types of feature analyses can be performed to extract complementary
information from a speech signal. These include short-time spectral features such
as MFCC, PLP, and filter bank, class posterior probability features from MLP for
phone-states or articulatory descriptors; long-time features such as RASTA-PLP,
modulation spectrum, and TRAP, which integrate information at the speech syllable
rate and are suitable for longer subword units and robust to reverberation. There
are also systematic manipulations on time and frequency scales to generate multi-
resolution spectral features. Different transformations can also be applied to the
same or different types of features to create diversity, for example, Gaussianiza-
tion, linear discriminative analysis, heterogeneous linear discriminative analysis
(HLDA), etc. The multiple feature representations can be treated as parallel feature
streams or they can be concatenated into a long vector for each frame as one feature
stream. In addition, automatically segmenting an audio input into speech segments
of different speakers is often a part of front-end processing. As it is difficult for
any algorithm to produce a perfect segmentation, multiple algorithms are used to
produce multiple segmentations, and on top of which multiple speech hypotheses
can be generated and combined.

5.4.1.2 Acoustic Model

There is a rich collection of methods for producing diversity in acoustic models.
Different model training criteria are available, with the major dichotomy lying
between maximum likelihood estimation and a variety of discriminative training
based estimation. To generate multiple datasets, speech data are resampled ran-
domly as in bootstrap sampling and subsampling, or deliberately as in boosting
or clustering, and from which multiple acoustic models are trained. For models
that use PDT-based state tying, randomizing PDTs leads to randomized acoustic
models. For each phone-state, the randomized PDTs form a random forest (RF)
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for multi-way phonetic context clustering, which is different from the classification
or regression RFs in the machine learning literature. Using deterministic PDTs,
multiple acoustic models can also be created by generating multiple GMMs for
each tied state. Multiple GMM–HMM acoustic models can be further produced
by using different mixture sizes in different models, or by varying the covariance
matrix structures of Gaussian pdfs, such as using diagonal covariance matrices in
one model, and full covariance matrices in another model. In MLP–HMM hybrid,
an MLP ensemble can be trained to produce multiple outputs of class posterior
probability scores for each frame.

It is worth mentioning that the subword units chosen for acoustic modeling
interact with the way that word pronunciations are described in a lexicon. Phone
units are by far the most widely used in lexicons and acoustic models, but
asynchronous articulatory states and syllable-like units are also explored and they
can be combined with the phone based models. In such a scenario, lexicon and
acoustic model can be viewed as contributing diversity jointly to a recognition
system.

5.4.1.3 Language Model

An important problem in language modeling is to capture word dependencies of
sufficient ranges without running into the sparse data problem. There is a rich
literature in smoothing word prediction probabilities through combining language
models of different history lengths. One commonly adopted approach is to smooth
the n-gram language model probabilities by backing off an n-gram with insufficient
count to an (n–1)-gram with sufficient count, notably the modified Kneser-Ney
back-off method [9]. There are also efforts on integrating language models with
different focuses on lexical, syntactic, and semantic aspects of a language. While
these approaches are under the general umbrella of multiple model combinations,
they are beyond the scope of this chapter. On the other hand, ensemble language
models have also been generated by using some typical machine learning methods
such as random forest, data sampling, parameter and structure randomization, etc. In
Sects. 5.5 and 5.6, light discussions are given on three such methods to complement
the heavier discussions on ensemble learning for acoustic models.

5.4.2 System Levels for Utilizing Diversity

Speech recognition as formulated in Eq. (5.8) is a sequence optimization problem.
Although a sequence can be treated as an entity for classification by an ensemble
system, its lower level constituents of words, phonemes, states, or features all
present chances for combining the base components of an ensemble system to
improve sequence decision accuracy, and even multiple speech inputs can be
combined as in a microphone array to improve speech quality for noise-robust
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speech recognition, but the latter case is beyond the scope of this chapter. Since
speech recognition performance is commonly measured by word error rate, the
lower level approaches may yield results that are more relevant to the performance
measure. For real-time systems, another important issue is the way that the system
level of utilizing diversity impacts decoding search.

5.4.2.1 Utterance Level Combination

Generally, for utterance level combination, decoding search is run multiple times on
a speech utterance to generate multiple word sequence hypotheses, where in each
run a different base component of an ensemble model is used in the recognition
system, including a type of feature representation, a base acoustic model, a base
language model, one of their combinations, etc., and the best hypothesis is the
one with the largest search score as defined by Eq. (5.8). Making decision at this
level resembles the independent sample classification tasks in machine learning.
This approach is straightforward to implement, as it requires no change in decoding
engine, and the multiple decoding searches can potentially be parallelized. For
long speech utterances, however, picking the one-best word sequence from a few
alternatives is inefficient in reducing word errors. Zhang and Rudnicky [80] and
Meyer and Schramm [57] investigated utterance level decision for boosted acoustic
models, Shinozaki and Furui [67] also used the decision strategy in data sampling
based ensemble acoustic and language models.

Another approach to utterance level combination is to let each system generate
a set of n-best word sequence hypotheses, rescore the word sequence hypotheses
by combining the scores of different models, and picking the hypothesis with the
highest score. Ma et al. [53] took this approach when combining the models of
multiple feature streams.

5.4.2.2 Word Level Combination

Word level combinations have been accomplished by several methods, including
recognition output voting error reduction (ROVER), its extension to confusion-
network combination (CNC), word pronunciation combination, as well as word
prediction probability combination. The first two methods, ROVER and CNC, are
applicable to combining recognition systems with arbitrary diversities, the third
method is for combining acoustic models, and the last one is for combining language
models.

5.4.2.2.1 ROVER

ROVER is a well-known method proposed by Fiscus [31]. In ROVER, the 1-best
word sequence hypotheses of different systems for a speech utterance are aligned
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through dynamic programming to generate a word transition network (WTN).
A WTN is a linear graph, where between each pair of adjacent nodes is a set (or a
bin) of aligned word arcs, with each arc corresponding to a word or an empty symbol
in one sequence hypothesis, and the arcs are weighted by word confidence scores.
For every such word set, a decision is made to choose the word hypothesis that
maximizes an interpolated measure of word frequency and confidence score, like
in Eqs. (5.2) and (5.3) when C represents the number of word candidates in the set.
The time-ordered ROVER word hypotheses define the word sequence hypothesis for
the speech utterance. A variant of ROVER is iROVER [40]. For each word set of a
WTN, the word hypothesis is determined by an Adaboost classifier, which is trained
from the WTNs’ word sets and by using features extracted from word lattices of a
development set. When the number of systems to be combined is small, iROVER
works better than ROVER [40].

5.4.2.2.2 CNC

CNC is an extension to ROVER, where each recognition system’s decoding search
outcome is represented in a confusion network (CN) instead of a 1-best word
sequence hypothesis, with the aim of presenting to the word-level combiner more
alternative word hypotheses through the CNs [30]. The multiple confusion networks
associated with the multiple systems are aligned by dynamic programming as in
ROVER to generate a weighted linear graph (WLG), the weights being the word
posterior probabilities in the CNs. Between each pair of adjacent nodes of the WLG
is a set of words from which the best word hypothesis is to be determined. To do so,
the posterior probabilities from the multiple systems are summed for each distinct
word in a set, and the best word hypothesis is then determined as in Eq. (5.3). Again,
the time-ordered word hypotheses define the word sequence hypothesis.

5.4.2.2.3 Word Pronunciation Combination

In the work of Meyer and Schramm [57], multiple acoustic models are generated,
and for each acoustic model, a set of renamed phones is defined, each renamed
phone being a variant of the corresponding phone in a standard phone set. For each
vocabulary word, its pronunciation is augmented by the alternative pronunciations
defined by the phone variants. In this way, each word has at least as many
pronunciation variants as the number of acoustic models. During decoding search,
a combined word score is computed by a weighted sum of the word scores based
on its pronunciation variants of different acoustic models. To curb the increased
search complexity due to the word score combination, a time-synchronous sum
approximation is made. One-pass decoding search is realized with this method,
whereas both ROVER and CNC require two-pass decoding search.



130 Y. Zhao et al.

5.4.2.2.4 Word Prediction Probability Combination

When multiple language models are estimated by ensemble learning, the prediction
probability for a word given a history can be combined from the probabilities for the
word given the equivalent histories in the base language models. Xu and Jelinek [78]
combined word n-gram probabilities in this way in their random-forest language
model.

5.4.2.3 Subword Level Combination

In the work of Dupont and Bourlard [29], subword units of different time scales, i.e.,
phonemes and syllables, are modeled by MLP–HMMs, and during decoding search,
the phoneme and syllable HMMs are kept as separate streams but their scores are
forced to recombine at the syllable level. The log likelihood scores of the two
streams are recombined either linearly or with a MLP. In the work of Dimitrakakis
and Bengio [27], separate streams of phone segment scores computed from multiple
acoustic models are forced to recombine at the phone level in a similar way as in
Dupont and Bourlard [29], but the combination is based on the max rule, i.e., picking
the largest score of one stream. The subword-level model combinations are suitable
for one-pass decoding search.

5.4.2.4 State Level Combination

Multiple acoustic models ƒ(1), � � � , ƒ(K) can be combined at the state level to give
a combined likelihood score for each speech frame or feature vector ot at each
tied state s. This approach is also referred to as frame-level combination since
the frame scores of the same state are combined rather than the segment scores
of the same state as in word and subword level combinations. Within the realm of
producing frame scores by using multiple models, a different approach is to stack up
multiple simple MLPs vertically to improve the frame acoustic scores through deep
learning, referred to as DSN. In the following, different methods for combining the
frame scores of multiple models are first discussed, followed by a discussion on the
approach of DSN.

5.4.2.4.1 Domain of Score Combination

Two methods are commonly used in frame score combination: weighted sum and
weighted product. In the weighted sum, the likelihood scores of the individual
models at each state s are linearly combined:
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which is equivalent to linearly combining the log likelihood scores of the individual
streams
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The product rule has also been used for just one stream of features, where the
multiple scores come from multiple acoustic models instead. Since averaging the
frame scores is done independently for each frame which does not need modification
on the decoding search algorithm, the state-level combination is easier to implement
than the word and subword level combinations in one-pass decoding search.

Instead of combining likelihood scores, combining posterior probability scores is
often used for the MLP–HMM hybrid. To do so, the likelihood scores of the individ-
ual and the ensemble models in Eqs. (5.10) and (5.12) are replaced by their posterior
probability counterparts of p(sjot, ƒ(i)

s ) and p(sjot, ƒs), respectively. Averaging
the log posterior probabilities has an appealing interpretation of minimizing the
average Kullback–Leibler divergence between the ensemble posterior probability
distribution and the individual model’s posterior probability distributions [62].

Robinson et al. [62] investigated combining the posterior probability distribu-
tions in both linear and log domains on recurrent-neural-network (RNN) based
RNN–HMM hybrid resulting from four combinations of two types of features and
two recognition directions (forward, backward), where the log domain combination
was shown to yield a better performance than the linear domain combination. Cook
and Robinson [13] and Schwenk [66] investigated linearly combining frame phone
posterior probabilities of multiple MLPs in boosted MLP–HMM acoustic models.
Kingsbury and Morgan [46], Halberstadt and Glass [38], Wu et al. [77], McMahon
et al. [56], Kirchhoff et al. [47], and Ma et al. [53] investigated combining state
scores of multi-stream features from different perspectives, such as phone-scale
feature vs. syllable scale feature, acoustic feature vs. articulatory feature, features of
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different time-frequency spectral resolutions. Their results favored using the product
combining rule for multi-stream feature based acoustic models. Dimitrakakis and
Bengio [26] investigated both weighted sum and weighted product combining rule
for simple phone-HMM multiple acoustic models. Xue and Zhao [79] investigated
the weighted sum combining rule for ensemble acoustic model of GMM–HMM
based on random forest of PDTs. More efforts of recent years on state-level score
combination are mentioned in the subsequent discussions.

5.4.2.4.2 Combining Weights Estimation

The combining weights as given in Eqs. (5.10–5.12) are specific to the base models
i, but they can also be specific to the state s or/and the feature vector ot. The weights
may be estimated as an integral part of ensemble model construction such as in
boosting, and they may also be post estimated after base model construction or
adaptively estimated from online data. As in classifier combination, the weights can
also be specified according to certain rules. Setting the weights to be uniform, i.e.,
˛i D 1/K, is simple and often gives reasonable results for a wide variety of ensemble
learners.

McMahon et al. [56] used the minimum classification error criterion to estimate
the weights for the multi-stream product based score combinations of Eq. (5.11).
Xue and Zhao [79] investigated methods for determining the weights of Eq. (5.10).
By viewing the ˛i’s as the weight parameters of a mixture density, MLE was
performed on ˛i’s while holding the base models fixed. Moreover, they made the
weights depend on ot to emphasize the base models that were more discriminative
for the current ot. This was done by setting the weight of a base model to be
proportional to the relative entropy (RE) or KL divergence between the tied-state
posterior probability distribution of the base model for ot and a uniform distribution.
They also looked into using the n-best rule by assigning uniform weights 1/n to
the base models that gave the n-best likelihood scores, which became the max rule
when n D 1. For a conversational speech recognition task and with the random-
forest ensemble acoustic model, they found the uniform weights to be consistently
better than the n-best weights, and the MLE weights to be consistently better than
the uniform and the RE weights. Combining MLE and RE weights led to further
improvements for large ensemble models.

5.4.2.4.3 Deep Stacking Network

Deep stacking network (DSN) builds a deep structure in neural networks (NNs) by
stacking up blocks of simple single-hidden-layer NNs [19, 20]. The bottom-level
NN takes the raw input data as its input, while each higher-level NN takes the raw
input data as well as the outputs of the lower blocks as its inputs, and the top NN
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has an additional softmax layer that provides the phone-state posterior probabilities
for each speech frame. A tensor-DSN (T-DSN) extends DSN by first generating
two hidden representations through two linear transformations on the input and
then combining the two hidden representations bilinearly to produce outputs [44].
Another extension to DSN is to use a kernel function in the input-to-hidden mapping
(K-DSN) [21], which enables complete convex parameter learning and makes the
effective number of hidden nodes in each hidden layer approach infinity.

5.4.2.5 Feature Level Combination

One approach to combining features is to construct a long feature vector for each
frame by concatenating different types of feature vectors of the frame. Kirchhoff
et al. [47] investigated concatenating MFCC and pseudo articulatory features
followed by discriminative feature component selection to reduce the dimension of
the combined feature vector. Zhu et al. [85] concatenated MLP features with PLP or
MFCC features. Povey et al. [59] proposed an fMPE method that discriminatively
projected posteriors of a large number of Gaussian models for a speech frame to
a regular-sized feature space, and the projected features were then combined with
PLP features additively to represent the frame.

In the case of MLP-based features, the posterior probability outputs from
multiple MLPs for each ot can be combined as the MLP feature of ot. Chen and
Zhao [11] trained multiple MLPs by cross-validation (CV) based data sampling (cf.
Sect. 5.5.2.3) and used the averaged posterior probability features of the multiple
MLPs to concatenate with MFCC features. Qian and Liu [60] used CV data
sampling as well as different types of spectral features of ot to construct multiple
MLPs, and they generated the ensemble MLP feature by using another MLP to
combine the posterior probability outputs of the base MLPs.

The above discussed methods for diversity exploitation are summarized in
Fig. 5.2.

5.5 Ensemble Learning Techniques for Acoustic Modeling

A significant amount of diversity-generating efforts has been gravitated towards
acoustic modeling, as it plays a central role in the accuracy performance of speech
recognition. In this section, further discussions are given to those methods that have
close relations with ensemble machine learning. These methods are categorized
below as being explicit or implicit in generating diversity. Along the line of implicit
diversity generation, the generic multiple system approach is also discussed, as it
commonly involves differences in acoustic models among other possible difference
factors.
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Level of 
combination Methods

Utterance Pick the word sequence with the highest score
tiple 1-best hypotheses

from mul-

Generate n-best word sequence hypotheses from each 
system, rescore the collection of multiple n-best hypothe-
ses by combining scores of different systems, and pick 
the hypothesis with the highest score. 

Word ROVER, iROVER
CNC
Combine word scores from different acoustic models by 
creating multiple pronunciations
Combine word scores from different language models 

Subword Recombine phone-stream and syllable stream scores at 
the syllable level
Recombine phone streams of base acoustic models at the 
phone level

State Combine frame likelihood scores of each state from mul-
tiple feature streams and/or  multiple acoustic models 
Combine frame posterior probabilities of each state from 
multiple feature streams and/or  multiple acoustic models
DSN, T-DSN

Feature Concatenate different types of features
fMPE
Average posterior probability features from multiple 
MLPs 

Fig. 5.2 Combining multiple features, models, or systems in different levels of speech recognition

5.5.1 Explicit Diversity Generation

5.5.1.1 Boosting

Boosting algorithms as used in acoustic modeling are mostly the multiple class
versions of Adaboost, i.e., Adaboost.M1 and Adaboost.M2 [35], since speech
recognition mostly deals with multiple sound classes. In Adaboost.M1, the goal of
the weak learner hk, k being the learning iteration, is to minimize the training error
for the resampled data distribution Dk, and hk only generates a class label for each
sample ot. In Adaboost.M2, the goal of the weak learner hk is to minimize a pseudo-
loss measure with respect to a distribution over the resampled examples and their
incorrect labels, and hk outputs a vector of plausibility values pertaining to assigning
ot to the different classes. In theory, Adaboost.M1 requires each weak learner to
have an error rate less than ½, while Adaboost.M2 requires each weak hypothesis
to have its pseudo-loss slightly better than random guess.

One way to categorize the boosting methods that are adapted to acoustic
modeling is based on their unit of resampling, where the common choices are
either utterances or frames. Resampling utterances is straightforward to implement,
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but it is not flexible for looking into the erroneous parts of an utterance. Because
speech frames are not independent, resampling at the frame level requires either a
simplifying assumption of independency or some additional formulations.

It is worth mentioning that boosting has been shown to be equivalent to functional
gradient boosting [39]. Along this line, a boosted acoustic model can also be
obtained through boosting the tied-state GMMs by adding in one Gaussian pdf at
a time to a GMM while maximizing an explicit objective function. Several such
efforts have been reported [28, 43, 71]. The details of these methods and results are
omitted here for the sake of space.

5.5.1.1.1 Utterance Resampling

Assume a training set U0 D f(Oi, hi), i D 1, � � � , Ng, where Oi is the feature sequence
of the i-th training utterance and hi is its reference word sequence. Zhang and
Rudnicky [80, 81] defined a pseudo-loss for Adaboost.M2 based on the n-best
utterance hypotheses H of a speech recognizer:
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with ˇ an empirically set smoothing parameter. By minimizing the pseudo-loss "k,
the model combining parameter ck and the sample weights dk

i are computed, and the
resampled training set Uk obtained. The combining rule at the utterance level is
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where P�k

�
h
ˇ̌̌
O
	

is the 1-best hypothesis from the model �k, or it is the re-ranked

1-best hypothesis, with re-ranking performed on the n-best list of �k by using
features derived from language model and posterior probability scores of utterance,
words, and phones. ROVER is also applied to the re-ranked 1-best hypotheses for
word level combination.

On the task of CMU Communicator system, the authors showed that 3 or 4 base
models were sufficient, beyond which no significant improvements were observed.
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Using 4 models, utterance level combination reduced word error rate (WER) over
the single model from 14.99 to 13.27 %, re-ranking n-best hypotheses followed by
utterance level combination further reduced WER to 12.98 %, and applying ROVER
on the re-ranked 1-best hypotheses led to the lowest WER of 12.52 %.

Meyer and Schramm [57] applied the resampling weights dk
i of Adaboost.M2

directly to the acoustic model training criterion instead of generating resampled
training utterance sets. The boosting weights modify the maximum likelihood (ML)
training objective function as

F k
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d k
i log p

�
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The boosted models are combined at the word level by using the multiple pronunci-
ation approach discussed in Sect. 5.4.2.2.3, with the combining weights defined by
boosting. Based on experimental results from a spontaneous medical report dictation
task and the Switchboard task, the authors concluded that only 2 or 3 base models
were needed, and boosting significantly reduced word error rate over a conventional
single acoustic model system.

Schwenk [66] applied Adaboost.M2 to the MLP part of the MLP–HMM hybrid,
and combined the frame phone posterior probability outputs of the base MLPs using
the weights of boosting. On the OGI Numbers 95 continuous speech recognition
task, boosting reduced word error rate from 6.3 to 5.3 %, which was significant
for the task. Cook and Robinson [13] investigated heuristic procedures to boost the
MLPs of an MLP–HMM hybrid and combined phone posterior probability outputs
of the base MLPs by a weighted average. In one of the heuristic procedure, a subset
of training utterances was first sampled from the training set to train a base MLP,
which was used to compute the frame error rate on the unused training utterances,
and the utterances with high error rates were next used to train a second MLP. The
authors experimented on the Wall Street Journal tasks of Hub2 93 and Hub3 95 and
achieved sizable word error reductions by combining two such base MLPs.

5.5.1.1.2 Frame Resampling

Zweig and Padmanabhan [86] used Adaboost.M2 and frame level resampling to
boost the GMMs of context-dependent phones (CDP). Assume a total of C CDPs
and denote the GMM of the yth CDP by fy(o). The classifier of the kth iteration
computes the CDP posterior probabilities given a frame sample o as
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and the hk(o, y) 0 s are combined as in Eq. (5.13) for frame classification. As
C is usually very large, the authors considered restricting the CDPs to a small
subset for a given o, or boosting clusters of CDPs. On a voicemail transcription
task, this boosting strategy gave a small and yet consistent improvement to frame
classification accuracy as well as a reduction in word error rate.

Zhang and Rudnicky [81] also used Adaboot.M2 for frame level resampling.
A frame-level word classifier is approximated from the n-best utterance hypotheses
of each base model to make the frame weights relevant to word errors. In each
boosting iteration, a resampled training set is generated to train a base acoustic
model, and the base models are combined at the utterance level as discussed in
Sect. 5.5.1.1.1. The authors showed that this method reduced word errors but it was
not as effective as the utterance level resampling discussed in Sect. 5.5.1.1.1.

Saon and Soltau [64] modified Adaboost.M1 to boost acoustic models. The
feature vectors ot are classified by a full acoustic model and a unigram language
model, unlike the independent frame classification of Zweig and Padmanabhan
[86]. The resampling weights are applied to the state occupancy counts in GMM
parameter estimation, as well as in phonetic decision tree construction. The base
acoustic models are combined at the word level by ROVER and at the frame level
by using a weighted sum of log likelihood scores. On English and Arabic broadcast
news tasks, the authors showed significant word accuracy gains of 1 % absolute
for both the maximum likelihood and discriminatively trained base acoustic models
with 50 h of training speech data; but the benefit of boosting was reduced when a
much larger amount of data of 2,000 h was used to train the acoustic models.

Dimitrakakis and Bengio [27] proposed an expectation boosting method and
performed resampling at both utterance and frame levels. An ad hoc loss function
relating to word error rate in each utterance is defined. Utterances are resampled to
form new training sets as in Cook and Robinson [13]. The frames associated with
a word error in an utterance are marked, and the weights of the marked frames
are computed based on an error distribution model, and the frame weights are
applied to the state occupancy counts in HMM parameter estimation. The base
models are combined at the state level using the weighted sum method. The authors
compared this approach with their earlier work of using Adaboost.M1 for pre-
segmented phone segments [26] on the OGI Numbers task. They found that the
expected boosting gave better performance than the phone segment boosting, but
the improvements over an ML single acoustic model system were only moderate.

5.5.1.2 Minimum Bayes Risk Leveraging (MBRL)

Bresline and Gales [6] proposed using Minimum Bayes Risk training with a mod-
ified loss function to generate complementary acoustic models. The loss function
reflects how well each training speech word is modeled by the base models that are
generated so far, and the loss values are the posterior probabilities of the erroneously
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hypothesized words given by the combined existing base models. To compute the
word posterior probabilities in a speech utterance, a confusion network is generated
by each base model, and the word posterior probabilities are accumulated as in CNC.
The loss values are further quantized to 0–1, where the erroneous words’ posterior
probabilities larger than a threshold are set to 1, and the rest are given a loss value
of 0. This importance-based data sampling for sequentially training the base models
resembles boosting in spirit but is designed directly for speech model training. The
authors evaluated MBRL on a Broadcast News Mandarin speech recognition task by
combining the models at the word level with CNC. They found that MBRL slightly
improved a ML single model baseline, while using different feature transformation
frontends for the base models of MBRL increased model diversity and word error
reduction.

5.5.1.3 Directed Decision Trees

Bresline and Gales [7] also proposed a sequential method of directed decision trees
(DDT) to bias the phonetic decision tree construction towards separating the states
of confusable words. Toward this end, a word loss is defined as one minus the word
posterior probability, sharpened or dampened by a power parameter, and the loss
is applied to the state occupancy counts in model training to help a new model
discriminate the word from its confusable ones. The word posterior probabilities are
obtained from CNC, and model combination is again based on CNC. On a Broadcast
News Arabic speech recognition task, by using three models, including a baseline
model, the DDT approach achieved 1–1.2 % absolute word error reductions on test
data that mismatched training conditions.

5.5.1.4 Deep Stacking Network

Although driven by different perspectives and realized in different forms, DSN
shares a commonality with boosting in terms of introducing base classification
modules sequentially to build an accurate classifier. On the training set, DSN
possesses the property that each higher NN block is guaranteed to perform better
than its lower blocks due to its retaining the raw input for each higher NN block
[44]. Because batch learning can be used for estimating the input-to-hidden and
hidden-to-output mapping parameters, a parallel implementation is feasible, making
DSN scalable to large amount of training data. T-DSN gave lower phone error rate
on TIMIT than DNN did. DSN and K-DSN has also shown promising potentials
in application tasks of spoken language understanding, dialog state tracking, and
information retrieval [21–23, 73].
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5.5.2 Implicit Diversity Generation

5.5.2.1 Multiple Systems and Multiple Models

In ROVER, Fiscus [31] combined 1-best utterance hypotheses from five systems
developed at BBN, CMU, CU-HTK, Dragon, and SRI for NIST’s LVCSR 1997
Hub 5-E Benchmark Test Evaluation. Since the research sites all have long histories
in speech recognition, the five systems naturally had different traits in features,
models, and decoding search. An illuminating point made in Fiscus’ paper was that
even though the word error rates of two systems differed only by 0.2 % (44.9 vs.
45.1 %), out of 5,919 errorful segments from the two systems, 738 segment errors
were unique to one system and 755 segment errors were unique to another system,
or about 25% errorful segments had no overlaps between the two systems. This
difference in error patterns supports the notion that different systems often implicitly
carry diversity, and combining them to exploit the diversity can help reduce word
errors. Indeed, ROVER achieved impressive word error reductions by combining
the five systems. While the original five systems had individual word error rates of
44.9, 45.1, 48.7, 48.9, and 50.2 %, respectively, which averaged to 47.56 %, the
word error rates from ROVER were 39.7, 39.5, and 39.4 % when using vote by
frequency of occurrence (FOO), vote by FOO and average word confidence, and
vote by FOO and maximum confidence, respectively.

Evermann and Woodland [30] generated multiple systems by varying the acous-
tic model training criterion between MLE and MMIE as well as the context width of
triphone and quinphone, and they used CNC to combine the four systems resulting
from the combinations of two training criteria and two context widths. On the task
of NIST Conversational Telephone Speech evaluation (eval00), the four systems
had the Viterbi 1-best word error rate of 28.8, 28.4, 27.6, and 27.3 %, respectively,
and the CN 1-best word error rate of 27.8, 27.2, 26.9, and 26.5 %, in that order.
By combining the four systems, CNC reduced the word error rate to 25.4 %. The
authors also showed that ROVER obtained lower word errors by combining the CN
1-best hypotheses instead of the Viterbi 1-best hypotheses.

ROVER and CNC based system combination have since attracted many efforts
which cannot be fully enumerated here. But the study of Gales et al. [37] is
discussed here to compare the effects of generating multiple systems by varying
the acoustic models versus actually using multiple systems of different research
sites. The authors investigated combining multiple systems using ROVER and CNC
for a Broadcast News transcription task in the DARPA EARS program, and they
compared multiple systems of two types. The first type was based on varying
acoustic models, including speaker adaptive model, gender-dependent model, etc.,
as well as on varying speaker segmentations of audio recordings from LIMSI, BBN,
and CUs. They found that different segmentations had a larger effect than different
models on word error rate. The second type was to combine four cross-site systems
of BBN, LIMSI, SRI, and CU, which made a much larger impact on word error rate
than the first type. On the Eval04 task, the four systems had the individual word error
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rates of 12.8, 14.0, 14.6, and 12.8 %, while their combination reduced the word error
rate to 11.6 %. This outcome supports the notion of incorporating many difference
factors in a system ensemble, since the interactions among different factors, such
as speech segmentation, feature analysis, acoustic model, and language model etc.
may potentially produce larger differences in word error patterns across systems
than varying only one or two factors.

It is worth mentioning here yet another system combination scenario considered
by Wachter et al. [75] that differs from most of the studied cases. The authors
combined a statistical acoustic model based speech recognition system with a
speech template based recognition system by using the rescoring approach for
utterance level combination. Although the template-based system had a larger word
error rate than that of the statistical acoustic model based system, because the error
patterns of the two types of systems were different, their combination reduced word
errors below the statistical model based system.

5.5.2.2 Random Forest

Siohan et al. [68] first proposed randomizing phonetic decision trees to generate
multiple acoustic models, and they used ROVER to combine the 1-best hypotheses
of the multiple systems based on the different acoustic models. Like the method of
[24], the PDTs are randomized by randomly selecting a node split out of n-best
possible splits for each node. The degree of randomness is controlled by the
parameter n: using a large n would infuse large randomness into a tree, but the
tree quality might be compromised by some bad node splits, and the opposite is true
when n is small. The conventional PDT is resulted when n D 1, i.e., always select
the best split for each node. Evaluations were carried out on MALACH and several
test sets of the DARPA EARs project, where consistent and significant word error
reductions were obtained when two or more systems using the randomized acoustic
models were ROVERed with a baseline system. Although increasing n led to poorer
individual systems, the accompanied rise in randomness increased diversity of the
acoustic models and thus helped reduce word errors.

Along the direction of randomizing the phonetic decision trees, Xue and Zhao
[79] proposed randomly sampling phonetic questions from a full set of questions
to generate multiple question subsets and using each sampled question subset to
construct the PDTs of one base acoustic model as in conventional model training.
They combined the multiple acoustic models at the state level by using the weighted
sum of Eq. (5.10) for the random-forest defined tied triphone states. Specifically,
given a question set � with M questions and a parameter M0 < M, a question subset
is generated by random sampling � without replacement M 0 times, and repeating
this procedure K times generates K subsets of questions. The parameter M 0 controls
the degree of randomness: using a large M 0 would make the question subsets to
differ less from one another, but it is good for the quality of the individual PDTs
and thus the base acoustic models, and vice versa. This approach of constructing
random forests of PDTs bears a resemblance with the random subspace approach
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of Ho [41], but it differs from that of Ho in that each random subset of questions
is used to train one acoustic model which itself has a large number of PDTs rather
than a single tree, and the random forest defines multiple clustering structures of
triphones rather than combined classification votes or regression predictions.

The authors evaluated the RF-based ensemble acoustic model on a conversational
speech recognition task of telehealth captioning [82]. Compared with an ML single
acoustic model baseline system having a word accuracy of 78.96 %, the ensemble
acoustic model with 10 base models improved word accuracy to 81.93 %, giving an
absolute accuracy gain of 2.97 %, or a relative word error reduction of 14.12 %. As
discussed below in Sects. 5.7 and 5.8, using the RF ensemble acoustic model with
state-level weighted sum combination offers benefits in triphone tying and mixture
modeling, and it is also convenient for redundancy removal.

5.5.2.3 Data Sampling

Shinozaki and Furui [67] investigated using utterance clustering to partition training
data into disjoint subsets and from which to train multiple acoustic models and
multiple language models. These models are used in a large number of parallel
decoding systems, one for each combination of the acoustic and the language
models, and the systems are combined at the utterance level by picking the word
sequence hypothesis of the largest decoding score as discussed in Sect. 5.4.2.1.
Utterance clustering is based on a K-means like procedure, with an effort on keeping
the cluster sizes balanced. Speech data are initially randomly partitioned to K
clusters, and K cluster-specific acoustic models are produced by adapting a general
acoustic model to the data in each cluster. Cluster assignment criterion is maximum
likelihood using the adapted acoustic models, and the models are readapted for each
new clustering. Text clustering on lecture speech transcript data proceeds in a similar
way with the cluster assignment criterion being minimum bigram perplexity, and
that cluster-specific language models are estimated by mixing the cluster specific
data with the full set of training data. The authors reported results on a Japanese
lecture speech transcription task, where the combination of ten acoustic models and
ten language models amounting to 100 parallel systems reduced word error rate
from 24.9 to 22.0 %.

Chen and Zhao [10–12] investigated utterance-level data sampling methods for
training multiple acoustic models, including cross-validation (CV) data partition,
overlapped speaker clustering, and random sampling without replacement. This
data sampling approach also produces a random forest of phonetic decision trees
for each phone state, with the models combined in the same way as in [79]. In
the CV method, K-fold cross-validation based data partition is used to generate
K overlapped training subsets, with each having a (K � 1)/K fraction of total
training utterances, and from each subset an acoustic model is trained. More than K
subsets can also be generated by a K-fold CV via shifting the data partition points
while keeping the subset fraction as (K � 1)/K. In speaker clustering, K-medoids
clustering with the maximum likelihood cluster assignment criterion is used.
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The clustering approach differs from that of Shinozaki and Furui [67] in that the
clusters are overlapped and the amount of overlap is controlled by the desired subset
size for training the base models, the utterances of each speaker are always assigned
to the same cluster, and the acoustic models are directly trained instead of adapted
for the individual clusters.

On TIMIT phone recognition, fixing the ensemble size K, CV and speaker
clustering both performed better than random sampling, and in comparison with
CV, speaker clustering allowed a smaller amount of data overlap while generating
the same level of word accuracy (with K D 10 the contrast was 50 % overlap for
clustering vs. 90 % overlap for CV). An encouraging result was that the positive
effect of ensemble model was amplified or maintained as the speech features
and model trainings improved for the base models. Enlarging the acoustic model
ensemble by varying the GMM mixture sizes in different base models also produced
positive effects. On the telehealth captioning task [82], by combining a tenfold CV
ensemble model using GMMs of size 16 with another tenfold CV ensemble model
using GMMs of size 32, word accuracy was improved by 3.3 % absolute from
79.2 % of a maximum likelihood single model baseline system.

Cui et al. [14] investigated a feature bootstrapping scheme for acoustic modeling.
The PDTs that are trained from MFCC based features are fixed as in conventional
single acoustic modeling, but for each PDT defined tied state, feature-specific
GMMs are estimated separately for different types of features, including MFCC,
PLP, and LPCC. The multiple feature-specific GMMs are combined at the state-level
using weighted log likelihood scores of Eq. (5.12). The authors reported results on
the DARPA Transtac project for speech-to-speech translation and showed superior
performance over the single models of the three feature types.

Dimitrakakis and Bengio [27] used bootstrap sampling on speech utterances to
generate multiple phone HMMs, and combined the multiple model frame scores by
a weighted sum of Eq. (5.10) or a weighted product of Eq. (5.12) for each HMM
state. On the OGI Numbers 95 task, they showed that the weighted sum combination
reduced word error rate over using single phone HMMs. They also compared the
effect of boosting and bagging on the same task, and found that while boosting
worked well for phone segment classification, it was not as effective as bagging on
phone recognition.

5.6 Ensemble Learning Techniques for Language Modeling

Xu and Jelinek [78] proposed a random forest based n-gram language modeling
approach to smooth word prediction probabilities. In a decision tree based n-gram
language model, a word prediction tree is constructed to classify the (n–1)-word
histories into some equivalent histories, which greatly reduces the number of
word prediction parameters and thus alleviates the problem of data sparseness.
In the random-forest language model, the decision trees are randomized through
randomly sampling training sentences, randomly selecting node-split questions, as
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well as randomly initializing data partition at each node, using entropy as the node
split goodness measure. The random forest of decision trees defines a multi-way
clustering of the (n–1)-word histories, and the word prediction probabilities from the
different trees are linearly combined. The authors applied the RF language models
with 10–100 decision trees to the speech recognition tasks of Wall Street Journal and
IBM 2004 conversational telephony system for rich transcription, and they obtained
0.6–1.1 % absolute word error rate reduction over the commonly used modified
Kneser-Ney smoothing.

Recurrent neural network (RNN) based language modeling has gained momen-
tum in recent years. Mikolov et al. [58] investigated training multiple RNN language
models (RNN–LM) and linearly combining their word prediction probabilities. The
multiple RNNs are generated by varying the RNN initialization weights, the size
of hidden layers, as well as the learning rate in adaptive RNNs, and the RNNs are
also combined with the n-gram language models based on the modified Kneser-Ney
back-off and the random forest as discussed above. The authors showed that on the
Penn Treebank portion of the Wall Street Journal task, the combined models worked
better than any individual RNN–LMs, and they also showed large improvements
over the Kneser-Ney back-off based n-gram language model in perplexity and word
error rate.

As discussed in Sect. 5.5.2.3, Shinozaki and Furui [67] investigated using
sentence clustering to generate multiple trigram language models together with
using utterance clustering to generate multiple acoustic models. A noteworthy
point shown through their work is that the ensemble learning gains from language
modeling and from acoustic modeling are largely complementary. Specifically, in
their lecture transcription task, the baseline word error rate of the single acoustic
model and single language model based system was 24.9 %; combining ten acoustic
models but still using one language model reduced word error rate to 23.0 %;
combining ten language models but still using one acoustic model reduced word
error rate to 23.6 %, and combining the ten acoustic models and the ten language
models reduced word error rate to 22.0 %.

5.7 Performance Enhancing Mechanism
of Ensemble Learning

5.7.1 Classification Margin

Schwenk [66] and Meyer and Schramm [57] examined the effect of boosting
acoustic models on classification margins. Schwenk showed that while there was
the trend that classification margins improved with the boosting iterations, the
margins of some samples remained totally wrong throughout the boosting iterations,
indicating the difficulties that the outlier samples might cause on boosting. Meyer
and Schramm showed that boosting improved margins over their baseline ML
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model, and boosting discriminatively trained models did even better on the margins.
Chen and Zhao [10] examined the effect of data sampling based ensemble acoustic
model on classification margin and showed that a tenfold CV based ensemble
acoustic model largely improved classification margin over an ML single acoustic
model.

5.7.2 Diversity

As the potential performance of an ensemble model is implied by the differences
among its base acoustic models, several authors defined diversity measures for
acoustic models and evaluated this attribute in conjunction with word error rates.

In Xue and Zhao [79], the correlation between two acoustic models is defined
to be the average correlations between their corresponding triphone state poste-
rior probabilities, and the ensemble correlation to be the average pairwise base
model correlations. In their random forest acoustic modeling work discussed in
Sect. 5.5.2.2, the authors showed that the ensemble correlation reduced with the
decrease in the question subset size M 0, and good word accuracy performances
occurred when M 0 was in the range of 70–90 % the total number of questions M,
which amounted to 0.82–0.89 ensemble correlations (measured on one speaker’s
test speech). Generally speaking, a good balance between the base model quality
and the ensemble diversity may be attained by properly choosing M 0. When M 0
is too small, the reduced base model quality would negatively offset the positive
effect of the increased ensemble diversity, and when M 0 is too large, the increased
ensemble correlation or reduced diversity would negatively offset the positive effect
of improved base model quality.

In Chen and Zhao [12], three measures for evaluating diversity in an ensemble
acoustic model are defined, including standard deviation of frame likelihood scores,
classification agreement on phone segments, and KL distance of triphone HMM
states. In frame-score standard deviation, speech frame likelihood scores are first
computed by base models with respect to a common state sequence which is defined
by Viterbi alignment from a baseline model, and per frame standard deviation of the
frame scores are computed and then averaged over all frames. In phone classification
agreement, if two base models produce an identical phone label for a phone segment,
which is again defined by a common Viterbi alignment, then the agreement count
is incremented by 1, and the classification agreement is the count accumulated
over all phone segments and model pairs, normalized by the total numbers of
phone segments and model pairs. In phone-state KL distance, the Kullback–Leibler
divergence between two GMMs in the same triphone HMM state of each base model
pair is computed, and the KL distances are averaged over the states and triphones
as well as the model pairs to represent the ensemble diversity. On the TIMIT task,
the authors compared the diversity measures alongside the phone accuracies of the
base and the ensemble models for five scenarios that differed in speech features
(MFCC vs. MFCC C MLP posterior probabilities), model training criteria (MLE
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vs. MPE), data sampling methods (tenfold CV vs. speaker clustering), as well as
certain combinations of these factors. The study confirmed that the performance
of an ensemble model with a low base model quality and a high diversity could
surpass an ensemble model with a high base model quality and a low diversity,
and that discriminative feature of MLP, discriminative model training, and speaker
clustering all helped increase diversity.

In Bresline and Gales [7], decision tree divergence is defined for the multiple
acoustic models generated by the directed decision trees (DDT) as discussed in
Sect. 5.5.1.3. The tree divergence uses Gaussian density divergence as a surrogate.
For each pair of acoustic models, any triphone state falls under two leaf nodes of
two DDTs whose leaf nodes are each modeled by a Gaussian density, and the tree
divergence is obtained by first computing a symmetrized KL-divergence between
two Gaussian pdfs for each triphone state and then averaging the divergence over
all triphone states by using the state posterior probabilities as the weights. The
authors showed large tree divergence values between the DDT acoustic models and
the baseline acoustic model when the Bayes loss used in the tree construction was
weighted by a power parameter greater or equal to one.

In Audhkhasi et al. [1], ambiguity decomposition of Krogh and Vedelsby [48]
is used with a 1-of-C word encoding to decompose an approximate ROVER word
error rate (WER) into a difference of two terms: the average WER of the individual
systems minus the diversity among these systems, where the diversity term is
defined similarly as the second term in Eq. (5.7), and C is the vocabulary size in
a word set of ROVER’s WTN. The approximate nature of the decomposition for
ROVER is due to the fact that the combined regression function H(x) of Eq. (5.7)
is a weighted average of the base regression functions, while in ROVER a hard
decision is made on the word hypothesis, which amounts to setting H(w) to 1

for w D arg max
w0

KX
iD1

˛i hi .w0/ and resetting H(w 0) to 0 for w 0 ¤ w. The authors

derived error bounds for the approximate decomposition with respect to the true
ROVER WER and validated it on speech recognition tasks of BN HUB4, WSJ, and
ICSI by ROVERing three recognition systems that used acoustic models trained
with different criteria or transformation and keeping 10-best hypotheses from each
system. The authors also proposed taking the diversity term as an objective to
construct multiple acoustic models and showed its connection with the MBRL
approach of Breslin and Gales [6].

5.7.3 Bias and Variance

In Xue and Zhao [79], the effect of the random forest acoustic model (Sect. 5.5.2.2)
on triphone state tying and GMM resolution is discussed. In an ensemble of K
acoustic models, since a triphone state is tied to different clusters in different base
models and the combined model for the triphone state is consisted of K GMMs
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from its K tied states, the triphone state is in effect modeled by a larger GMM
that is jointly defined by K state-tying clusters. The combination of the state tying
structures across base models defines many more uniquely combined GMMs than
the original single model GMMs, and thus the granularity of state tying is effectively
refined by the random forest, and the combined states underlying the unique GMMs
are referred to as RF-tied states. The authors showed that on one speaker’s data in
the telehealth dataset [82], the number of tied states in the baseline single acoustic
model was 1,603, while the number of RF-tied states was 12,033, indicating that
the combined model could distinguish 7.5 times more tied triphone states than the
baseline single model did. On the other hand, because the data in each RF-tied state
came from the leaf nodes of K different PDTs, having the large number of GMMs
did not suffer from data sparsity. When measured on the same speaker’s dataset,
in the baseline acoustic model, each tied triphone state cluster had on average 9.1
triphone states, and in the ensemble model each RF tied state had on average 29.8
triphone states. Both the increased state-tying resolution and the increased acoustic
space coverage due to the larger number of Gaussian pdfs in each GMM indicate a
bias reduction effect by the random forest acoustic model.

Another phenomenon illustrated in Xue and Zhao [79] is that overfitting the
individual acoustic models does not lead to overfit in the ensemble model. The
authors showed that for the baseline model, when varying the mixture size of
the GMMs as 8, 16, 20, and 24, word accuracy was 77.65, 78.96, 78.68, and
78.15 %, respectively, where the fact that the performance peaked at mixture size 16
suggested an underfit by the smaller size and an overfit by the larger sizes. However,
for the ensemble acoustic model with K D 20 base models, the word accuracies were
78.06, 80.81, 81.86, and 81.92 % respectively for the base model mixture sizes of 8,
16, 20, and 24, i.e., the ensemble performance increased with the mixture size. This
implies that the ensemble model is able to take advantage of the reduced bias in the
overfit base models by reducing the variance that accompanies the overfit.

5.8 Compacting Ensemble Models to Improve Efficiency

While an ensemble system improves recognition accuracy in general, it also requires
more memory storage and computation power than a conventional single system
does. For resource limited applications such as mobile computing, certain post
processing can be applied on an ensemble system to reduce its redundancy. Along
this line, several criteria have been proposed to cluster the component models
of ensemble models, mostly for the weighted-sum combined GMMs, resulting in
significant reduction in model size while largely maintaining the performance edge
of ensemble learning.
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5.8.1 Model Clustering

Xue and Zhao [79] examined the Gaussian pdfs of the combined GMMs for
the RF tied states (cf. Sect. 5.7.3) in the PCA projected 2-D feature space, and
they showed that the combined GMMs provided a denser coverage of the feature
space but also increased overlaps and thus redundancies among the Gaussian
pdfs. The authors investigated clustering the Gaussian pdfs to produce fewer but
more representative ones for the GMMs of each RF-tied state. The K-means
and agglomerative clustering methods were used for this purpose with a Bayes-
error-based dissimilarity measure that characterized the overlapped area under two
Gaussian curves. On the same task as discussed in Sects. 5.5.2.2 and 5.7.3, through
the clustering the ensemble system’s decoding search time approached that of the
single model system while the ensemble word accuracy edge was largely retained.
When agglomerative clustering was applied to an ensemble of 100 base models with
the size-16 GMMs used in the base models, which amounted to 1,600 Gaussians in
each combined GMM of a RF-tied state, keeping 32 Gaussians after the clustering
(a compression ratio of 50) gave an absolute word accuracy gain of 1.56 % over the
baseline and a decoding time that was 1.4 times the baseline time, and keeping 16
Gaussians after the clustering (a compression ratio of 100) gave an absolute word
accuracy gain of 1.04 % over the baseline and a decoding time that was 1.2 times
the baseline time.

5.8.2 Density Matching

Cui et al. [16] also investigated reducing redundancy in weighted-sum combined
GMMs and they proposed two additional steps after clustering full-covariance Gaus-
sian pdfs. The first additional step was to minimize the KL divergence between each
clustered full-covariance GMM with its original combined GMM by re-estimating
the parameters of the clustered GMM so as to closely approximate the original
combined GMM. For this purpose, they used methods of variational EM and Monte
Carlo. The second additional step was to convert the reestimated full-covariance
Gaussian pdfs to diagonal-covariance Gaussian pdfs to reduce computations in
decoding search, and a Monte Carlo method was again used to estimate the
parameters of the diagonal-covariance Gaussian pdfs while using the full-covariance
GMM as the reference, and the obtained parameters of the diagonal Gaussian
pdfs were further optimized by performing a maximum likelihood estimation on
resampled speech utterances. The authors showed on a low-resource Dari speech
recognition task that when the ensemble model was restructured to have the same
number of diagonal Gaussian pdfs as in a maximum likelihood single-model
baseline, absolute word error reductions of 2.9 and 1.9 % were maintained over
the baseline on a held-out test set and live evaluation data, respectively. As a
comparison, using the full-covariance combined model that had nine times more
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Gaussian pdfs than the baseline gave absolute WER reductions of 4 and 3.7 %,
respectively, over the baseline. The authors also evaluated the restructured model
against a single model baseline when the acoustic models were both discriminatively
trained and they showed absolute WER reductions of 1.4 and 1.3 %, respectively,
over the baseline.

5.9 Conclusion

Ensemble learning in speech recognition has been progressing in parallel with
efforts in machine learning and it is currently an active direction of research. The
complex nature of speech recognition gives ensemble learning many opportunities
for exploration. In this chapter, a number of successful approaches that have
emerged in this area and targeted at different levels and components of speech
recognition are discussed. While some of the approaches have apparent counterparts
in machine learning, they are seen to be also crafted to address the unique problems
in speech recognition.

One important issue in ensemble learning is explicit versus implicit diversity
generation. For speech recognition, both directions have been explored and shown
successful in acoustic modeling. The two approaches appear to differ in the number
of base models that are needed for an ensemble model. The explicit methods
covered here invariably used just two or a few base models, while the implicit
methods benefitted from a much large number of base models. This dichotomy may
be attributed to the fact that the explicit approach derives diversity directly from
the training error patterns and just a few base models are sufficient to cover the
major error patterns, while the implicit approach relies more on exploiting certain
randomness aspects in training data to cope with the variations in unseen data, and
as such it may not be as well focused as the explicit approach but could be more
flexible nevertheless.

Systematically generating diversity in a certain component of a speech recog-
nition system, e.g., acoustic model, versus utilizing diversity of multiple factors
indirectly across different speech recognition systems appear to be an interesting
topic. Combining multiple difference factors across systems appear to be effective
in generating complementary word error patterns while manipulating a single
component of a system may not be always as successful. On the other hand, the two
approaches have different implications in decoding search, where combining models
can be realized in one-pass decoding search such as frame score combination,
combining systems requires multiple-pass decoding search such as ROVER or CNC.

The score combining methods of weighted sum versus weighted product is also
an issue worthy of attention. In the case of working with different feature streams,
the weighted product combining rule has been favored over the weighted sum, while
in the case of combining base models of GMM–HMMs and for the same features,
the weighted sum combining method may have certain advantages. Further analyses
and thorough experimental comparisons may be needed to draw firm conclusions.
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In addition to the predominantly supervised learning work discussed herein,
ensemble learning efforts are also being directed toward utilizing abundantly found
data for semi-supervised acoustic model training [15]. Overall, ensemble learning
for speech recognition has been successful. It is expected that by keeping pace
with the advances in machine learning, speech and language modeling, as well as
computing technology, continued efforts along this direction will further boost the
accuracy and robustness of speech recognition.
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Chapter 6
Deep Dynamic Models for Learning Hidden
Representations of Speech Features

Li Deng and Roberto Togneri

Abstract Deep hierarchical structure with multiple layers of hidden space in
human speech is intrinsically connected to its dynamic characteristics manifested
in all levels of speech production and perception. The desire and an attempt to
capitalize on a (superficial) understanding of this deep speech structure helped ignite
the recent surge of interest in the deep learning approach to speech recognition
and related applications, and a more thorough understanding of the deep structure
of speech dynamics and the related computational representations is expected to
further advance the research progress in speech technology. In this chapter, we first
survey a series of studies on representing speech in a hidden space using dynamic
systems and recurrent neural networks, emphasizing different ways of learning the
model parameters and subsequently the hidden feature representations of time-
varying speech data. We analyze and summarize this rich set of deep, dynamic
speech models into two major categories: (1) top-down, generative models adopting
localist representations of speech classes and features in the hidden space; and
(2) bottom-up, discriminative models adopting distributed representations. With
detailed examinations of and comparisons between these two types of models, we
focus on the localist versus distributed representations as their respective hallmarks
and defining characteristics. Future directions are discussed and analyzed about
potential strategies to leverage the strengths of both the localist and distributed
representations while overcoming their respective weaknesses, beyond blind inte-
gration of the two by using the generative model to pre-train the discriminative one
as a popular method of training deep neural networks.
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6.1 Introduction

Before around 2010–2011, speech recognition technology had been dominated by a
“shallow” architecture—hidden Markov models (HMMs) with each state character-
ized by a Gaussian mixture model (GMM). While significant technological success
had been achieved using complex and carefully engineered variants of GMM-
HMMs and acoustic features suitable for them, researchers long before that time
had clearly realized that the next generation of speech recognition technology would
require solutions to many new technical challenges under diversified deployment
environments and that overcoming these challenges would likely require “deep”
architectures that can at least functionally emulate the human speech system known
to have dynamic and hierarchical structure in both production and perception
[29, 36, 41, 96]. An attempt to incorporate a primitive level of understanding
of this deep speech structure, initiated at the 2009 NIPS Workshop on Deep
Learning for Speech Recognition and Related Applications [29], has helped create
an impetus in the speech recognition community to pursue a deep representation
learning approach based on the deep neural network (DNN) architecture, which was
pioneered by the machine learning community only a few years earlier [52, 53] but
rapidly evolved into the new state of the art in speech recognition with industry-wide
adoption [16,28,29,51,59,78,93,94,108]. In the mean time, it has been recognized
that the DNN approach (with its interface to the HMM) has not modeled speech
dynamics properly. The deep and temporally recurrent neural network (RNN) has
been developed to overcome this problem [13,49], where the internal representation
of dynamic speech features is discriminatively formed by feeding the low-level
acoustic features into the hidden layer together with the recurrent hidden features
from the past history. Even without stacking RNNs one on top of another as carried
out in [49] or feeding DNN features as explored in [13], an RNN itself is a deep
model since temporal unfolding of the RNN creates as many layers in the network
as the length of the input speech utterance.

On the other hand, before the recent rise of deep learning for speech modeling
and recognition, many earlier attempts had been made to develop computational
architectures that are “deeper” than the conventional GMM-HMM architecture. One
prominent class of such models are hidden dynamic models where the internal repre-
sentation of dynamic speech features is generated probabilistically from the higher
levels in the overall deep speech model hierarchy [12, 19, 23, 37, 65, 86, 92, 102].
Despite separate developments of the RNNs and of the hidden dynamic models, they
share the same motivation—more realistically representing the dynamic structure of
speech. Nevertheless, the different ways in which these two types of deep dynamic
models are constructed endow them with distinct pros and cons. Investigations of
the contrast between the two model types and the similarity to each other will yield
insights into the strategies for developing new types of deep dynamic models with
the hidden representations of speech features superior to the existing RNNs and
hidden dynamic models. This forms the main motivation of this chapter.
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In this chapter, we will focus on the most prominent contrast between the above
two types of models in terms of the opposing localist and distributed representations
adopted by the hidden layers in the models. In the distributed representation adopted
by the RNNs, we cannot interpret the meaning of activity on a single unit or neuron
in isolation. Rather, the meaning of the activity on any particular unit depends on
the activities of other units. Using distributed representations, multiple concepts
(i.e., phonological/linguistic symbols) can be represented at the same time on the
same set of neuronal units by superimposing their patterns together. The strengths
of distributed representations used by the RNN include robustness, representational
and mapping efficiency, and the embedding of symbols into continuous-valued
vector spaces which enable the use of powerful gradient-based learning methods.
The localist representation adopted by the generative hidden dynamic models has
very different properties. It offers very different advantages—easy to interpret,
understand, diagnose, and easy to work with. Section 6.6 of this chapter will
compare the two types of models, in terms of the localist versus distributed
representations as well as other attributes, with respect to their strengths and
weaknesses in detail. Based on such comparisons, Sect. 6.7 will discuss how to
exploit the advantages of both types of models and of the representations they
have adopted while circumventing their weaknesses. Before that and in Sects. 6.2–
6.5, we will first provide a detailed review on major deep dynamic models in
the literature relevant to our topic, focusing on the algorithms for learning model
parameters from data and for computing the representations in the hidden spaces.

6.2 Generative Deep-Structured Speech Dynamics:
Model Formulation

6.2.1 Generative Learning in Speech Recognition

In speech recognition, the most common generative learning approach is based on
the GMM-HMM; e.g., [9, 30, 58, 88]. A GMM-HMM is a model that describes
two dependent random processes, an observable process x1WT and a hidden Markov
process y1WT . The observation xt is assumed to be “generated” by the hidden
state yt according to a Gaussian mixture distribution. The GMM-HMM can be
parameterized by � D .�; A; B/; � is a vector of state prior probabilities; A D
.ai;j / is a state transition probability matrix; and B D fb1; : : : ; bng is a set
where bj represents the Gaussian mixture model of state j . The state is typically
associated with a sub-segment of a phone in speech. One important innovation in
speech recognition is the introduction of context-dependent states (e.g. [32, 88]),
motivated by the desire to reduce output variability associated with each state,
a common strategy for “detailed” generative modeling. A consequence of using
context dependency is a vast expansion of the HMM state space, which, fortunately,
can be controlled by regularization methods such as state tying.
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The introduction of the HMM and the related statistical methods to speech
recognition in mid 1970s [2,57] can be regarded the most significant paradigm shift
in the field, as discussed in [3]. One major reason for this early success was due to
the highly efficient maximum likelihood learning method invented about 10 years
earlier [5]. This MLE method, often called the Baum–Welch algorithm, had been the
principal way of training the HMM-based speech recognition systems until 2002,
and is still one major step (among many) in training these systems nowadays. It is
interesting to note that the Baum–Welch algorithm serves as one major motivating
example for the later development of the more general Expectation-Maximization
(EM) algorithm [17].

The goal of maximum likelihood learning is to minimize an empirical risk with
respect to the joint likelihood loss (extended to sequential data), i.e.,

Remp.f / D �
X

i

ln p.x.i/; y.i/I �; A; B/ (6.1)

where x represents acoustic data, usually in form of a sequence feature vectors
extracted at frame-level and y represents a sequence of linguistic units. It is crucial
to apply some form of regularization to improve generalization. This leads to a
practical training objective referred to as accuracy-regularization which takes the
following general form:

J.f / D Remp.f / C �C.f / (6.2)

where C.f / is a regularizer that measures “complexity” of f , and � is a tradeoff
parameter. In large-vocabulary speech recognition systems, it is normally the case
that word-level labels are provided, while state-level labels are latent. Moreover, in
training HMM-based speech recognition systems, parameter tying is often used as a
type of regularization [55]. For example, similar acoustic states of the triphones can
share the same Gaussian mixture model. In this case, the C.f / term is expressed by

C.f / D
Y

.m;n/2T
ı.bm D bn/ (6.3)

where T represents a set of tied state pairs.
The use of the generative model of HMMs, including the most popular Gaussian-

mixture HMM, for representing the (piece-wise stationary) dynamic speech pattern
and the use of MLE for training the tied HMM parameters constitutes one of the
most prominent and successful examples of generative learning in speech recogni-
tion. This success was firmly established by the speech recognition community, and
has been widely spread to the machine learning and related communities; in fact,
the HMM has become a standard tool not only in speech recognition but also in
machine learning and their related fields such as bioinformatics and natural language
processing. For many machine learning as well as speech recognition researchers,
the success of the HMM in speech recognition is a bit surprising due to the well-
known weaknesses of the HMM.
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Another clear success of the generative learning paradigm in speech recognition
is the use of the GMM-HMM as prior “knowledge” within the Bayesian framework
for environment-robust speech recognition. The main idea is as follows. When
the speech signal, to be recognized, is mixed with noise or another non-intended
speaker, the observation is a combination of the signal of interest and interference
of no interest, both unknown. Without prior information, the recovery of the
speech of interest and its recognition would be ill defined and subject to gross
errors. Exploiting generative models of GMM-HMMs, or often simpler GMMs, as
Bayesian priors for “clean” speech overcomes the ill-posed problem. Further, the
generative approach allows probabilistic construction of the model for the relation-
ship between the noisy speech observation, clean speech, and interference, which
is typically nonlinear when the log-domain features are used. A set of generative
learning approaches in speech recognition following this philosophy are variably
called “parallel model combination” [45], vector Taylor series (VTS) method [1,26],
and Algonquin [44]. Notably, the comprehensive application of such a generative
learning paradigm for single-channel multitalker speech recognition is reported
and reviewed in [89], where the authors apply successfully a number of well
established ML methods including loopy belief propagation and structured mean-
field approximation. Using this generative learning scheme, speech recognition
accuracy with loud interfering speakers is shown to exceed human performance.

Despite some success of GMM-HMMs in speech recognition, their weaknesses,
such as the conditional independence assumption, have been well known for speech
recognition applications [3,4]. Since the early 1990s, speech recognition researchers
have begun the development of statistical models that capture the dynamic proper-
ties of speech in the temporal dimension more faithfully than HMMs. This class
of beyond-HMM models have been variably called the stochastic segment model
[81, 82], trended or nonstationary-state HMM [18, 24], trajectory segmental model
[54, 81], trajectory HMMs [63, 111, 112], stochastic trajectory models [47], hidden
dynamic models [12,19,23,37,65,86,92,102], buried Markov models [8], structured
speech model [40], and the hidden trajectory model [39] depending on different
“prior knowledge” applied to the temporal structure of speech and on various sim-
plifying assumptions to facilitate the model implementation. Common to all these
beyond-HMM models is some temporal trajectory structure built into the models,
hence trajectory models. Based on the nature of such a structure, we can classify
these models into two main categories. In the first category are the models focusing
on a temporal correlation structure at the “surface” acoustic level. The second
category consists of hidden dynamics, where the underlying speech production
mechanisms are exploited as the Bayesian prior to represent the temporal structure
that accounts for the observed speech pattern. When the mapping from the hidden
dynamic layer to the observation layer is limited to linear (and deterministic), then
the generative hidden dynamic models in the second category reduces to the first
category.

The temporal span of the generative trajectory models in both categories above
is controlled by a sequence of linguistic labels, which segment the full sentence into
multiple regions from left to right; hence segment models.
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In a general form, the trajectory/segment models with hidden dynamics make
use of the switching state space formulation. They use temporal recursion to define
the hidden dynamics, z.k/, which may correspond to articulatory movement during
human speech production. Each discrete region or segment, s, of such dynamics is
characterized by the s-dependent parameter set �s , with the “state noise” denoted
by ws.k/. The memory-less nonlinear mapping function is exploited to link the
hidden dynamic vector z.k/ to the observed acoustic feature vector o.k/, with
the “observation noise” denoted by vs.k/, and parameterized also by segment-
dependent parameters. The combined “state equation” (6.4) and “observation
equation” (6.5) below form a general switching nonlinear dynamic system model:

z.k C 1/ D gkŒz.k/; �s	 C ws.k/ (6.4)

o.k0/ D hk0 Œz.k0/; ˝ s0 	 C vs0.k0/: (6.5)

where subscripts k and k0 indicate that the functions gŒ:	 and hŒ:	 are time varying
and may be asynchronous with each other. s or s0 denotes the dynamic region
correlated with phonetic categories.

The model expressed by (6.4) and (6.5) is not only dynamic, but also deep
since there is a hierarchy of information flow from discrete linguistic symbols
s to the hidden dynamic vector z.k/ and then to the observed vectors o.k/.
We call this type of model a generative deep-structured dynamic model. Being
“generative” here means that the model provides a causal relationship from the
(top) linguistic labels to intermediate and then to the (bottom) observed acoustic
variables. This distinguishes from the “discriminative” deep-structured models
where the information flow starts from the (bottom) observed acoustic variables
to the intermediate representations and then to the (top) linguistic labels.

There have been several studies on switching nonlinear state space models for
speech recognition, both theoretical [21, 37] and experimental [12, 61, 65, 86]. The
specific forms of the functions of gkŒz.k/; �s	 and hk0 Œz.k0/; ˝ s0 	 and their param-
eterization are determined by prior knowledge based on the current understanding
of the nature of the temporal dimension in speech. In particular, state equation (6.4)
takes into account the temporal elasticity in spontaneous speech and its correlation
with the “spatial” properties in hidden speech dynamics such as articulatory
positions or vocal tract resonance frequencies; see [23] for a comprehensive review
of this body of work.

When nonlinear functions of gkŒz.k/; �s 	 and hk0 Œz.k0/; ˝ s0 	 in (6.4) and (6.5)
are reduced to linear functions (and when synchrony between the two equations are
eliminated), the switching nonlinear dynamic system model is reduced to its linear
counterpart, the switching linear dynamic system. It can be viewed as a hybrid
of standard HMMs and linear dynamical systems, with a general mathematical
description of

z.k C 1/ D Asz.k/ C Bsws.k/ (6.6)

o.k/ D Csz.k/ C vs.k/: (6.7)
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There has also been an interesting set of work on the switching linear dynamic
system applied to speech recognition. The early set of studies have been carefully
reviewed in [81] for generative speech modeling and for its speech recognition
applications. The studies reported in [42, 72] further applied this system model
to noise-robust speech recognition and explored several approximate inference
techniques, overcoming intractability in decoding and parameter learning. The study
reported in [91] applied another approximate inference technique, a special type
of Gibbs sampling commonly used in machine learning, to a speech recognition
problem.

During the development of trajectory/segment models for speech recogni-
tion, a number of machine learning techniques invented originally in non-speech
recognition communities, e.g. variational learning [61], pseudo-Bayesian [42, 65],
Kalman filtering [81], extended Kalman filtering [23, 37, 101], Gibbs sampling
[91], orthogonal polynomial regression [24], etc., have been usefully applied with
modifications and improvement to suit the speech-specific properties and speech
recognition applications. However, the success has mostly been limited to small-
scale tasks. We can identify four main sources of difficulty (as well as new
opportunities) in successful applications of trajectory/segment models to large-scale
speech recognition. First, scientific knowledge on the precise nature of the underly-
ing articulatory speech dynamics and its deeper articulatory control mechanisms is
far from complete. Coupled with the need for efficient computation in training and
decoding for speech recognition applications, such knowledge has been forced to be
again simplified, reducing the modeling power and precision further. Second, most
of the work in this area has been placed within the generative learning setting, having
a goal of providing parsimonious accounts (with small parameter sets) for speech
variations due to contextual factors and co-articulation. In contrast, the recent joint
development of deep learning by both ML and speech recognition communities,
which we will review in Sect. 6.6, combines generative and discriminative learning
paradigms and makes use of massive instead of parsimonious parameters. There is a
huge potential for synergy of research here. Third, although structural ML learning
of switching dynamic systems via Bayesian nonparametrics has been maturing and
producing successful applications in a number of ML and signal processing tasks
(e.g. the tutorial paper [43]), it has not entered mainstream speech recognition; only
isolated studies have been reported on using Bayesian nonparametrics for modeling
aspects of speech dynamics [83] and for language modeling [14]. Finally, most
of the trajectory/segment models developed by the speech recognition community
have focused on only isolated aspects of speech dynamics rooted in deep human
production mechanisms, and have been constructed using relatively simple and
largely standard forms of dynamic systems.

In the remainder of this section, we will review two special cases of the general
dynamic models of speech represented by (6.4)–(6.7) with hidden structure. These
models are considered to be “deep”, in that the hidden structure is modeled as an
intermediate information processing stage connecting the linguistic information to
the observable acoustics.
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6.2.2 A Hidden Dynamic Model with Nonlinear
Observation Equation

Let us consider in detail the hidden dynamic model (HDM) using the extended
Kalman filter [102]. The hidden dynamics is chosen to be the vocal-tract-resonances
(VTRs), which are closely related to the smooth and target-oriented movement of
the articulators. The first component of the HDM, also called the state equation,
is a target-directed, continuously-valued (hidden) Markov process that is used to
describe the hidden VTR dynamics according to:

z.k C 1/ D ˆ̂̂sz.k/ C .Im � ˆ̂̂s/Ts C w.k/ (6.8)

where z.k/ is the m � 1 VTR state vector, Ts is the m � 1 phone target vector
parameter and ˆ̂̂s is the m�m diagonal “time-constant” matrix parameter associated
with the phone regime s. The phone regime is used to describe the segment of speech
that is attributed to the phone identified by the model pair (ˆ̂̂s; Ts). The process
noise w.k/ is an i.i.d, zero-mean, Gaussian process with covariance Q. The target-
directed nature of the process is evident by noting that z.k/ ! Ts as k ! 1
independent of the initial value of the state.

The second component of the HDM is the observation equation used to describe
the static mapping from the lower dimensional hidden VTR state vector (typically
m D 3 for the first three VTR resonances) to the higher dimensional observable
acoustic feature vector. The general form of this mapping assumes a static,
multivariate nonlinear mapping function as follows:

o.k/ D hr.z.k// C v.k/: (6.9)

where the n � 1 acoustic observation o.k/ is the set of acoustic feature vectors
for frame k (the usual Mel-frequency cepstral co-efficient (MFCC) features with
n D 12), and hr.z.k// is the n � m static, non-linear mapping function on the state
vector z.k/ associated with the manner of articulation r . The manner of articulation
describes how the phone is articulated to produce the acoustic observations arising
from the speech production process and will usually be different for the different
broad phonetic classes (e.g. vowels, voiced stops, etc.). The observation noise
v.k/ is an i.i.d, zero-mean, Gaussian process with covariance R. The multivariate
mapping function hr.z.k// is implemented by a m-J -n feedforward multi-layer
perceptron (MLP) with J hidden nodes, a linear activation function on the output
layer, and the antisymmetric hyperbolic tangent function on the hidden layer. There
is a unique MLP network for each distinct r .

The switching state behaviour of this model is represented by an M -state
discrete-time random sequence, where s 	 s.k/ 2 Œ1; 2 : : : ; M 	 is a random
variable that takes on one of the M possible “phone” regimes (or states) at time k.
An additional R-state discrete-time random sequence also exists where r 	 r.k/ 2
Œ1; 2; : : : R	 is a random variable that takes on one of the R possible manner of
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articulation states at time k. In practice both sequences are unknown and need to be
estimated, both when training the model (i.e. estimating the parameters) and testing
(i.e. using the model to rescore or decode an unknown observation sequence).

An important property of this model is the continuity of the hidden state variable
z.k/ across phone regimes. That is, z.k/ at the start of segment l C 1 is set to
the value computed at the end of segment l. This provides a long-span continuity
constraint across adjacent phone regimes that structurally models the inherent
context dependencies and coarticulatory effects [35].

An important concern is the specific modeling of the state dynamic and observa-
tion process. The target-directed state dynamic is reasonable but requires knowledge
of the per-phone target and time-constant values. If these are not known these have
to be jointly estimated. The non-linear mapping from the state vector to observation
vector is more problematic as the MLP weights also have to be estimated and this
creates a system with too many degrees of freedom. Possible solutions to do this
have included: using prior VTR measurement data to independently train the MLP
[102], using a more simple linear mapping [61], or restricting to observation features
like LPC cepstra which permit an analytical mapping with the VTR resonances [31].
Finally we also assume that the phone sequence or segmentation of model regimes,
s.k/, is known in advance, which, in practice, requires training on phonetically
transcribed speech corpora.

6.2.3 A Linear Hidden Dynamic Model Amenable
to Variational EM Training

An alternative approach to implementing the hidden dynamic model is to reformu-
late it in the context of a segmental switching state space model and to apply the
variational EM algorithm to learn the model parameters. The state equation and
observation equation in this reformulated model, as described in [61], are

xn D Asxn�1 C .I � As/us C w; (6.10)

yn D Csxn C cs C v; (6.11)

where n and s are frame number and phone index respectively, x is the hidden
dynamics and y is the acoustic feature vector (such as MFCC). The hidden dynamics
are chosen to be the vocal-tract-resonances (VTRs). The state equation (6.10) is
a linear dynamic equation with phone dependent system matrix As and target
vector us and with built-in continuity constraints across the phone boundaries. The
observation equation (6.11) represents a phone-dependent VTR-to-acoustic linear
mapping. The choice of linear mapping is mainly due to the difficulty of algorithm
development. The resulting algorithm can also be generalized to mixtures of linear
mappings and piece-wise linear mappings within a phone. Gaussian white noises
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wn and vn are added to both the state and observation equations to make the model
probabilistic. Similar models have been proposed and used previously [35, 62].

To facilitate algorithm development, the model is also expressed in terms of
probability distributions:

p.sn D s j sn�1 D s0/ D �ss0 ;

p.xn j sn D s; xn�1/ D N.xn j Asxn�1 C as; Bs/;

p.yn j sn D s; xn/ D N.yn j Csxn C cs; Ds/; (6.12)

where �ss0 is the phone transition probability matrix, as D .I�As/us and N denotes
a Gaussian distribution with mean and precision matrix (inverse of the covariance
matrix) as the parameters. The joint distribution over the entire time sequence is
given by

p.y1WN ; x1WN ; s1WN / D
Y

n

p.ynjsn; xn/p.xnjsn; xn�1/p.snjsn�1/: (6.13)

The conditional independence relations of the model can be seen more clearly
from a graphic form (Bayesian network) as shown in Fig. 6.1.

There are a few issues to be solved before any estimation or learning algorithms
can be applied to speech, and they are discussed here:

1. Parameter initialization: It is important to initialize the parameters appropriately
for an iterative local optimization procedure such as EM. The HDM enjoys
the benefit of being closely related to speech-specific knowledge and some
key parameters, especially the phone targets, can be reliably initialized from a
formant synthesizer. Due to the small number of total parameters, others can be
easily initialized by a small amount of hand-labeled VTR data.

Fig. 6.1 HDM represented as a Bayesian network
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2. Segmental constraint: The probabilistic form of the model allows phone transi-
tions to occur at each frame, which is undesirable for speech. In training, we
construct a series of time-varying transition matrices �ss0 based on the given
phonetic transcript (or one created from a lexicon if only word transcripts are
given) and some initial segmentation to impose the segmental constraint and
force the discrete-state component of the model to be consistent with the phonetic
transcript. Such an approach also greatly reduces the number of possible phones
s that have to be summed at each time step.

6.3 Generative Deep-Structured Speech Dynamics:
Model Estimation

6.3.1 Learning a Hidden Dynamic Model Using
the Extended Kalman Filter

The estimation problem that we investigate is as follows. Given multiple sets of
observation sequences, o.k/, for each distinct phone regime, we seek to determine
the optimal estimates for the unknown values of the state-equation parameters ˆ̂̂ and
T, and the observation-equation parameters, W, which is the MLP weight vector of
the nonlinear mapping function h.z.k//. For clarity of notation we will drop the
s and r subscripts since it is understood the estimation equations only apply for
observations taken over a particular phone regime segment.

The expectation-maximization (EM) algorithm is a widely used algorithm for
the estimation of the parameters in general state-space models and in the current
research on the HDM [34, 35]. The EM algorithm provides new estimates of the
parameters after the set of all available N observation vectors have been presented.
The EM algorithm can be considered a batch or off-line estimation method most
suited to applications where all of the data is available. We now present the
EM algorithm for the specific type of model given by (6.8) and (6.9) following
[101, 102].

6.3.1.1 E-Step

For a sequence of N observation vectors, the E-step involves computation of
the conditional expectation of the log joint likelihood between Z D fz.0/; z.1/; : : : ;

z.N /g and O D fo.0/; o.1/; : : : ; o.N /g given the observation O and parameter set

 estimated at the previous step, that is:
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Q.
j
/ D Eflog L.Z; Oj
/jO; 
/

D �1

2

N �1X
kD0

EN ŒeT
k1Q�1ek1jO; 
	

�1

2

N �1X
kD0

EN ŒeT
k2R�1ek2jO; 
	 C const (6.14)

where ek1 D Œz.k C 1/ � ˆ̂̂z.k/ � .I � ˆ̂̂/T	 and ek2 D Œo.k/ � h.z.k//	 and
EN denotes the expectation based on N samples. The standard EKF smoother
is used to provide estimates of the hidden dynamic variable, z.k/ 	 Oz.kjN / D
EN Œz.k/jO; 
	. The Jacobian matrix for the n � m non-linear mapping function
h.z.k// used in the EKF recursion is given by:

H j i
z ŒOz.k C 1jk/	 D

�
@oj .k C 1/

@Ozi .k C 1jk/

�

D
"

JX
hD1

W h
2j g

0

.WT
1h Oz.k C 1jk//W i

1h

#
(6.15)

where oj .k/ is the j th component of the observation vector at time k, Ozi .k C 1jk/

is the i th component of the predicted state vector Oz.k C 1jk/ at time k, W i
lh is the

i th component of the MLP weight vector, Wlh, of node h in layer l (layer 1 is the
hidden layer and layer 2 is the output layer), J is the number of nodes in the hidden
layer and g

0

.x/ is the derivative of the activation function in the hidden layer.
It should be noted that the continuity condition on Oz.k/ is also applied to the EKF

error covariance.

6.3.1.2 M-Step

In the M-step the Q function in (6.14) is maximised with respect to the parameter
set 
 D .T; ˆ̂̂; W/. We consider the first summation involving the parameters T
and ˆ̂̂:

Q1.Z; O; 
/ D
N �1X
kD0

EN ŒeT
k1Q�1ek1jO; 
	 (6.16)

Minimisation of Q1, which implies maximisation of Q, proceeds by setting the
partial derivatives with respect to T and ˆ̂̂ to zero, that is:

@Q1

@ˆ̂̂
/

N �1X
kD0

EN fŒz.k C 1/ � ˆ̂̂z.k/ � .I � ˆ̂̂/T	ŒT � z.k/	T jO; 
g D 0 (6.17)
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@Q1

@T
/

N �1X
kD0

EN fŒz.k C 1/ � ˆ̂̂z.k/ � .I � ˆ̂̂/T	jO; 
g D 0 (6.18)

The resulting equations to be solved are nonlinear high-order equations in terms
of ˆ̂̂ and T:

Nˆ̂̂TTT � ˆ̂̂TAT � ˆ̂̂ATT � N TTT C TAT C BTT C ˆ̂̂C � D D 0 (6.19)

B � ˆ̂̂A � N T C Nˆ̂̂T D 0 (6.20)

where:

A D
N �1X
kD0

EN Œz.k/jO; 
	; C D
N �1X
kD0

EN Œz.k/z.k/T jO; 
	 (6.21)

B D
N �1X
kD0

EN Œz.k C 1/jO; 
	; D D
N �1X
kD0

EN Œz.k C 1/z.k/T jO; 
	 (6.22)

are the relevant sufficient statistics that are computed by the EKF smoother during
the E-step. By simplifying (6.19) and (6.20) we can first form:

Ô̂̂ D XY�1 (6.23)

where Ô̂̂ is the estimate of the system matrix, and then:

OT D 1

N
.I � Ô̂̂ /�1.B � Ô̂̂ A/ (6.24)

where OT is the estimate of the target vector.
We now consider the second summation of the Q function in (6.14) involving

the parameter W:

Q2.Z; O; 
/ D
N �1X
kD0

EN ŒeT
k2R�1ek2jO; 
	 (6.25)

Minimisation of Q2, which leads to maximisation of Q, proceeds by setting the
partial derivatives with respect to W to zero, that is:

@Q2

@W
/

N �1X
kD0

EN Œ
@

@W
fŒo.k/ � h.z.k/	2gjO; 
	 D 0 (6.26)

That is, Q2 is minimised when the error signal, ek2 D o.k/ � h.z.k//,
is minimised. Since the multi-variate mapping function is a feedforward MLP
network, then the standard back-propagation is used with Oz.kjN / as the input and
o.k/ as the desired output to provide estimates of the MLP weights, W.
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6.3.2 Learning a Hidden Dynamic Model
Using Variational EM

6.3.2.1 Model Inference and Learning

For the system described by (6.10)–(6.13) inference refers to the calculation of
posterior distribution p.s1WN ; x1WN jy1WN / given all model parameters, while learning
refers to the estimation of model parameters 
 D fA1WS ; a1WS ; B1WS ; C1WS ; c1WS ; D1WS g
given the complete distribution, usually in a maximum likelihood (ML) sense.
Under this EM framework, inference is the E step and learning is the M step. In
this model, however, the posterior turns out to be a Gaussian mixture whose number
of components is exponential in the number of states (or phones) and frames, and is
therefore computationally intractable. Here we develop two approximations, called
GMM and HMM posteriors, respectively, based on variational techniques. The
idea is to choose the approximate posterior q.s1WN ; x1WN j y1WN / with a sensible and
tractable structure and optimize it by minimizing its Kullback-Liebler (KL) distance
to the exact posterior. It turns out that this optimization can be performed efficiently
without having to compute the exact (but intractable) posterior.

It is necessary to say a few words about previous approaches and other related
work in the literature before presenting the current one. Most of our previous
algorithms are developed under the assumption of hard phone boundaries which
are either known or estimated separately by some heuristic methods [65], and the
intractable exact posterior is approximated by a single Gaussian. This is also true for
most of the work in a broad range of literatures for switching state space models. In
contrast, the approach presented here uses soft phone assignments that are estimated
under a unified EM framework as in [46,85], but unlike [46,85], our approximation
doesn’t factorize s from x and results in a multimodal posterior over x instead of a
unimodal one, which is justifiably more suitable for speech applications.

6.3.2.2 The GMM Posterior

Under this approximation q is restricted to be:

q.s1WN ; x1WN / D
Y

n

q.xn j sn/q.sn/; (6.27)

where from now on the dependence of the q’s on the data y is omitted but always
implied.

Minimizing the KL divergence between q and p is equivalent to maximizing the
following functional F,

FŒq	 D
X
s1WN

Z
dx1WN q.s1WN ; x1WN / �

Œlog p.y1WN ; x1WN ; s1WN / � log q.s1WN ; x1WN /	 ; (6.28)
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which is also a lower bound of the likelihood function and will be subsequently used
as the objective function in the learning (M) step.

By taking calculus of variation to optimize F w.r.t. q.xnjsn/ and q.sn/, it turns
out that each component q.xnjsn/ follows a Gaussian distribution, i.e.,

q.xn j sn D s/ D N.xn j �s;n; � s;n/; (6.29)

and the parameters �s;n and � s;n are given by

� s;n D CT
s DsCs C Bs C

X
s0

�s0;nC1AT
s0Bs0 As0 ; (6.30)

� s;n�s;n D Bs.As

X
s0

�s0;n�1�s0;n�1 C as/

C
X

s0

�s0;nC1AT
s0Bs0.�s0 ;nC1 � as0/

CCT
s Ds.yn � cs/; (6.31)

where �s;n D q.sn D s/ and is computed from

log �s;n D f1.�s;n; � s;n; 
/ C f2.�s0;n�1; � s0;n�1; 
/

Cf3.�s0;nC1; � s0;nC1; 
/: (6.32)

and the f ’s denote linear functions whose expressions are too lengthy to be written
down here. Equations (6.30) and (6.31) are coupled linear equations given model
parameters 
 and � ’s and can be solved efficiently by sparse matrix techniques.
Equation (6.32) is a nonlinear equation by itself and has to be solved by iteration.
Equations (6.30)–(6.32) constitute the inference or E step of the algorithm and have
to be solved iteratively all together after some proper initializations.

Model learning involves taking derivatives of F w.r.t. all the model parameters
and setting them to zero. This results in a set of linear equations which can be solved
easily. Since this step is standard in all EM approaches with no special difficulties,
the detailed equations are omitted.

6.3.2.3 The HMM Posterior

Under this approximation q is taken to be

q.s1WN ; x1WN / D
NY

nD1

q.xn j sn/ �
NY

nD2

q.sn j sn�1/ � q.s1/: (6.33)
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First we define two posterior transition probabilities:

�s0s;n D q.sn D s j sn�1 D s0/;

N�s0s;n D q.sn D s j snC1 D s0/ D �s0s;nC1�s;n

�s0;nC1

; (6.34)

where � is the same as in the previous section. It turns out that each q.xnjsn/ is again
a Gaussian distribution, and �s;n and � s;n are given by coupled linear equations
having the same form as (6.30) and (6.31), except that the � ’s are replaced by
�’s and N�’s. These equations can again be solved by sparse matrix techniques. The
� ’s and �’s themselves can be solved by the following efficient backward-forward
procedure given the model parameters and all the �’s and � ’s.

1. Initialize: zs;N C1 D 1 for all s.
2. Backward pass: for n D N; � � � ; 2

zs;n D
X

s0

exp.fss0;n/zs0 ;nC1 ;

�ss0 ;n D 1

zs;n

exp.fss0;n/zs0;nC1 : (6.35)

3. For n D 1:

z1 D
X

s

exp.fs;1/zs;2 ;

�s;1 D 1

z1

exp.fs;1/zs;2 : (6.36)

4. Forward pass: for n D 2; � � � ; N

�s;n D
X

s0

�s0s;n�s0;n�1 : (6.37)

Again, f ’s are functions of the �’s, � ’s and model parameters whose expressions
are too lengthy to be given here. Also remember that the complete E step still has to
iterate between the calculation of q.xn j sn/ and q.sn j sn�1/. The model learning is
quite similar to the GMM case and the detailed equations are omitted.

There are a number of important issues to be addressed when using the above
algorithms for speech:

1. Hidden dynamics recovery: It is both informative (especially for debugging) and
desirable to recover the hidden VTR, and it is calculated by:

Oxn D
X

s

�s;n�s;n (6.38)

for both the GMM and HMM posterior assumptions.
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2. Recognition strategy: Here we seek the most likely phone sequence given a
sequence of observations. For the GMM case, this is simply accomplished by
choosing the maximum � at each frame; while for the HMM posterior we need to
perform Viterbi decoding by using � and �, e.g., the initialization and induction
equation for the scoring are:

V1.s/ D �s;1; Vn.s0/ D max
1�s�S

ŒVn�1.s/�ss0 ;n	 �s0;n: (6.39)

It is highly desirable to incorporate segmental (or minimal duration) constraint
and language weighting in the recognition stage and this is implemented by
Viterbi decoding with modified transition matrices for both cases (in GMM the
transition matrix is created from scratch while in HMM the changes are merged
into �). Such a strategy allows the hidden dynamic model to be used in phone
recognition directly without resorting to an N-best list provided by HMM.

6.4 Discriminative Deep Neural Networks Aided
by Generative Pre-training

After providing detailed reviews of a range of generative deep-structured dynamic
models of speech, we now turn to their discriminative counterpart. Recall that the
generative model expressed by (6.4) and (6.5) have deep structure, with causal
relations from the top discrete linguistic symbols s through to hidden dynamic
vectors and then to the bottom observed vectors. The reverse direction, from bottom
to top, is referred to as the inference step, which is required to perform learning
(i.e., training) and for decoding in speech recognition whose goal is to estimate the
linguistic symbol sequences. Now we discuss the discriminative version of the deep-
structured models, where the direct information flow is opposite: bottom up rather
than top down. That is, the observed acoustic variables are used to directly compute
the intermediate representations, and then to compute the estimate of linguistic
labels. It turns out that the deep neural network (DNN) is an excellent candidate
for this type of model, as (non-recurrent) neural networks are known to lack the
modeling power for explicit speech dynamics.

Historically, the DNN had been very difficult to learn before 2006 [11, 80]. The
difficulty was alleviated around 2006 with the work of [52, 53], where a generative
pre-training procedure was developed and reported. In this section, we will review
this advance and the more recent impact by the DNN on speech recognition research
and deployment. We will then analyze the weaknesses of the DNN-based methods,
especially those in modeling speech dynamics. This analysis paves a natural path to
the recurrent versions of the DNN as well as their connections to and the differences
between the generative deep-structured dynamic models of speech reviewed in the
preceding two sections.
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6.4.1 Restricted Boltzmann Machines

The generative pre-training procedure first reported in [52, 53] starts with the
restricted Boltzmann machine (RBM), which is a special type of Markov random
field that has one layer of (typically Bernoulli) stochastic hidden units and one layer
of (typically Bernoulli or Gaussian) stochastic visible or observable units.

In an RBM, the joint distribution p .v; hI �/ over the visible units v and hidden
units h, given the model parameters � , is defined in terms of an energy function
E .v; hI �/ of

p .v; hI �/ D exp .�E .v; hI �//

Z
; (6.40)

where Z D P
v

P
h exp .�E .v; hI �// is a normalization factor, and the marginal

distribution that the model assigns to a visible vector v (we don’t care about h since
it is hidden) is

p .vI �/ D
P

h exp .�E .v; hI �//

Z
: (6.41)

For a Bernoulli (visible)-Bernoulli (hidden) RBM, the energy function is
defined as

E .v; hI �/ D �
IX

iD1

JX
j D1

wij vi hj �
IX

iD1

bivi �
JX

j D1

aj hj ; (6.42)

where wij represents the symmetric interaction term between the visible unit vi and
the hidden unit hj , bi and aj are the bias terms, and I and J are the numbers
of visible and hidden units. The conditional distributions (for Bernoulli stochastic
variables, i.e. binary data) can be efficiently calculated as

p
�
hj D 1jvI �

� D 

 
IX

iD1

wij vi C aj

!
; (6.43)

p .vi D 1jhI �/ D 

0
@ JX

j D1

wij hj C bi

1
A (6.44)

where  .x/ D 1=.1C exp .x//.
Similarly, for a Gaussian (visible)-Bernoulli (hidden) RBM, the energy is

E .v; hI �/ D �
IX

iD1

JX
j D1

wij vi hj � 1

2

IX
iD1

.vi � bi /
2 �

JX
j D1

aj hj ; (6.45)
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The corresponding conditional distributions (for Bernoulli or binary h and
Gaussian or continuous-valued v) become

p
�
hj D 1jvI �

� D 

 
IX

iD1

wij vi C aj

!
; (6.46)

p .vi jhI �/ D N

0
@ JX

j D1

wij hj C bi ; 1

1
A ; (6.47)

where vi takes real values and follows a Gaussian distribution with meanPJ
j D1 wij hj C bi and variance one. Gaussian-Bernoulli RBMs can be used to

convert real-valued stochastic variables to binary stochastic variables, which can
then be further processed using the Bernoulli-Bernoulli RBMs.

Taking the gradient of the log likelihood log p .vI �/ we can derive the update
rule for the RBM weights as

4wij / Edata

�
vi hj

� � Emodel

�
vi hj

�
; (6.48)

where Edata

�
vi hj

�
is the expectation observed in the training set under the

distribution defined by the given observations, p.hjvI �/, and Emodel

�
vihj

�
is

that same expectation under the distribution defined by the model, p .v; hI �/.
Calculation of Edata

�
vi hj

�
is facilitated by using p.hj D 1jvI �/ to weight samples

vi hj given observations v. Unfortunately, Emodel

�
vi hj

�
is intractable to compute

so the contrastive divergence (CD) approximation to the gradient is used where
Emodel

�
vi hj

�
is replaced by running the Gibbs sampler initialized at the data for

one full step. The steps in approximating Emodel

�
vi hj

�
are as follows:

1. Initialize v0 by the data
2. Sample h0 � p .hjv0/

3. Sample v1 � p .vjh0/

4. Sample h1 � p .hjv1/

Then the (v1; h1) is a sample from the model, acting as a very rough estimate
of Emodel

�
vihj

�
. Use of (v1; h1) to approximate Emodel

�
vihj

�
gives rise to

the algorithm of CD-1. The sampling process is pictorially depicted in Fig. 6.2
where < vi hj >k	 .vk; hk/.

Careful training of RBMs is essential to the success of applying the RBM and
related deep learning techniques to solve practical problems. See the technical report
[50] for a very useful practical guide for training RBMs.

The RBM discussed above is a generative model, which characterizes the input
data distribution using hidden variables and there is no label information involved.
However, when the label information is available, it can be used together with the
data to form the joint “data” set. Then the same CD learning can be applied to



172 L. Deng and R. Togneri

Fig. 6.2 A pictorial view of sampling from an RBM during RBM learning (courtesy of Geoff
Hinton)

Fig. 6.3 An illustration of the DBN/DNN architecture

optimize the approximate “generative” objective function related to data likelihood.
Further, and more interestingly, a “discriminative” objective function can be defined
in terms of the conditional likelihood of labels. This discriminative RBM can be
used to “fine tune” an RBM for classification tasks [60].

6.4.2 Stacking Up RBMs to Form a DBN

Stacking a number of the RBMs learned layer by layer from bottom up gives rise
to a deep belief network (DBN), an example of which is shown in Fig. 6.3. The
stacking procedure is as follows. After learning a Gaussian-Bernoulli RBM (for
applications with continuous features such as speech) or Bernoulli-Bernoulli RBM
(for applications with nominal or binary features such as a black-white image or
coded text), we treat the activation probabilities of its hidden units as the data for
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training the Bernoulli-Bernoulli RBM one layer up. The activation probabilities of
the second-layer Bernoulli-Bernoulli RBM are then used as the visible data input
for the third-layer Bernoulli-Bernoulli RBM, and so on. Mathematically for a DBN
with M layers we can model the joint distribution between the observations v and
the L hidden layers fhk W k D 1; 2; : : : M g as follows

p
�
v; h1; : : : ; hM

� D p
�
v
ˇ̌

h1
� M�2Y

kD1

p.hkjhkC1/

!
p.hM�1; hM / (6.49)

This allows us to derive relevant distributions, e.g. the posterior distribution
p.hM jv/. Some theoretical justification of this efficient layer-by-layer greedy
learning strategy is given in [52], where it is shown that the stacking procedure above
improves a variational lower bound on the likelihood of the training data under
the composite model. That is, the greedy procedure above achieves approximate
maximum likelihood learning. Note that this learning procedure is unsupervised
and requires no class label. Each hidden layer can be considered a nonlinear feature
detector of the previous hidden layer outputs and each layer adds progressively more
complex statistical structure by the data with the top layer representing the highest
level desired structure.

When applied to classification tasks, the generative pre-training can be followed
by or combined with other, typically discriminative, learning procedures that fine-
tune all of the weights jointly to improve the performance of the network. This
discriminative fine-tuning is performed by adding a final layer of variables that
represent the desired outputs or labels provided in the training data. Then, the back-
propagation algorithm can be used to adjust or fine-tune the network weights in
the same way as for the standard feed-forward neural network. When used in this
way we refer to this as the deterministic neural network or DNN. What goes to
the top, label layer of this DNN depends on the application. For speech recognition
applications, the top layer, denoted by hM D fl1; l2; : : : ; lj ; : : : ; lLg, in Fig. 6.3, can
represent either syllables, phones, sub-phones, phone states, or other speech units
used in the HMM-based speech recognition system.

The generative pre-training described above has produced better phone and
speech recognition results than random initialization on a wide variety of tasks.
Further research has also shown the effectiveness of other pre-training strategies.
As an example, greedy layer-by-layer training may be carried out with an additional
discriminative term to the generative cost function at each level. And without
generative pre-training, purely discriminative training of DNNs from random initial
weights using the traditional stochastic gradient decent method has been shown
to work very well when the scales of the initial weights are set carefully and the
mini-batch sizes, which trade off noisy gradients with convergence speed, used
in stochastic gradient decent are adapted prudently (e.g., with an increasing size
over training epochs). Also, randomization order in creating mini-batches needs to
be judiciously determined. Importantly, it was found effective to learn a DNN by
starting with a shallow neural net with a single hidden layer. Once this has been
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trained discriminatively (using early stops to avoid overfitting), a second hidden
layer is inserted between the first hidden layer and the labeled softmax output
units and the expanded deeper network is again trained discriminatively. This can
be continued until the desired number of hidden layers is reached, after which a
full backpropagation “fine tuning” is applied. This discriminative “pre-training”
procedure is found to work well in practice (e.g., [94, 107]).

Despite the great success in using DNNs for large vocabulary speech recognition,
training is still quite slow due to the large number of parameters and the required
large data set sizes. Part of current research has now begun to focus on optimization
techniques to improve the training regime for DNNs [93] specifically and for speech
and language processing as a whole [104].

6.4.3 Interfacing the DNN with an HMM to Incorporate
Sequential Dynamics

The DNN discussed above is a static classifier with input vectors having a
fixed dimensionality. However, many practical pattern recognition and information
processing problems, including speech recognition, machine translation, natural
language understanding, video processing and bio-information processing, require
sequence recognition. In sequence recognition, sometimes called classification with
structured input/output, the dimensionality of both inputs and outputs are variable.

The HMM, based on dynamic programming operations, is a convenient tool
to help port the strength of a static classifier to handle dynamic or sequential
patterns. Thus, it is natural to combine the DNN and HMM to bridge the gap
between static and sequence pattern recognition. A popular architecture to fulfil
this is shown in Fig. 6.4. This architecture has been successfully used in speech
recognition experiments from small to mid and to large scales, as reported in
[15, 16, 51, 59, 64, 77, 79, 93, 94, 108–110]. The excellent recognition accuracy
obtained by the DNN-HMM and its scalability from small to large tasks have
resulted in wide industry adoption of this architecture and a huge surge of research
efforts. This is so despite the recognition of the weaknesses of modeling realistic
speech dynamics via the HMM and via the windowed speech frames as inputs to
the DNN.

It is important to note that the unique elasticity of the temporal dynamic of
speech as elaborated in [39, 40] would require temporally-correlated models more
powerful than the HMM for the ultimate success of speech recognition. Integrating
such dynamic models having realistic co-articulatory properties with the DNN
and possibly other deep learning models to form the coherent dynamic deep
architecture is a challenging new research. Adding recurrent connections over the
hidden neurons gives one reasonable way of incorporating speech dynamics into
the model, at least more principled than using a long window of frames in the
DNN-HMM architecture. In the next section we turn to a review and analysis of
the recurrent neural network (RNN) before providing connections to the generative
deep-structured dynamic speech models reviewed earlier.
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Fig. 6.4 Interface between DBN/DNN and HMM to form a DBN-HMM or DNN-HMM

6.5 Recurrent Neural Networks for Discriminative
Modeling of Speech Dynamics

The use of RNNs or related neural predictive models for speech recognition dates
back to early 1990s (e.g., [27, 90]), with relatively low accuracy and whose results
could not be reproduced by other groups until recently. Since deep learning became
popular in recent years, much more research has been devoted to the RNN (e.g.,
[48, 69–71, 73–76, 84, 98–100, 103] and its stacked versions, also called deep
RNNs [49]. Most work on RNNs made use of the method of Back Propagation
Through Time (BPTT) to train the RNNs, and empirical tricks need to be exploited
(e.g., truncate gradients when they become too large [74]) in order to make
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the training effective. It is not until recently that careful analysis was made to
fully understand the source of difficulties in learning RNNs and somewhat more
principled, but still rather heuristic, solutions were developed. For example, in
[7, 84], a heuristic strategy of gradient norm clipping was proposed to deal with
the gradient exploding problem during BPTT training. There are other solutions
offered to improve the learning method for the RNN (e.g., [28, 56]).

6.5.1 RNNs Expressed in the State-Space Formalism

Let us formulate the RNN in terms of the nonlinear state space model commonly
used in signal processing. We will compare it with the same state space formulation
of nonlinear dynamic systems used as generative models for speech acoustics. The
contrast between the discriminative RNN and the use of the same mathematical
model in the generative mode allows us to shed light onto why one approach works
better than another and how a combination of the two is desirable.

As shown in Fig. 6.5 given an input sequence X D .x1; � � � ; xt ; � � � ; xT /,
the RNN computes the noise free hidden state dynamic vector sequence H D
.h1; � � � ; ht ; � � � ; hT / by iterating the following from t D 1 to T :

ht D f .Wxhxt C Whhht�1/ D f .ut / (6.50)

yt D g.Whyht / D g.vt / (6.51)

where Y D .y1; � � � ; yt ; � � � ; yT / is the “target label” output sequence, which is the
“observation” sequence in the standard state-space formulation.

The desired target signal in the above state-space model is the predicted “label”
or target vector, lt , a vector of one-hot coded class labels. Define the error function

Fig. 6.5 Information flow in the standard recurrent neural network from observation variables to
the target labels as output variables via the hidden-state vectors
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as the sum of squared differences between yt and lt over time, or the cross entropy
between them. Then BPTT unfolds the RNN over time in computing the gradients
with respect to Why; Wxh and Whh, and stochastic gradient descent is applied to
update these weight matrices.

6.5.2 The BPTT Learning Algorithm

The BPTT [10,56] is an extension of the classic feedforward backpropagation where
the stacked hidden layers for the same training epoch, t , are replaced by unfolding
the recurrent neural network in time and stacking T single hidden layers across time,
t D 1; 2; : : : ; T . Referring to Fig. 6.5 and (6.50), (6.51) let us assume a recurrent
neural network with K inputs, N internal hidden units, and L outputs, and define
the following variables at time layer t :

• xt is the K � 1 vector of inputs, ht is the N � 1 vector of hidden unit outputs,
yt is the L � 1 vector of outputs, and lt is the L � 1 vector of training output
targets, where the j th vector element, e.g., ht .j / is the j th hidden unit for j D
1; 2; : : : ; N ;

• Why is the L � N matrix of weights connecting the N hidden units to the L

outputs, Wxh is the N � K matrix of weights connecting the K inputs to the
N hidden units, and Whh is the N � N matrix of weights connecting the N

hidden units from layer t � 1 to layer t , where the .i; j /th matrix element, e.g.,
why.i; j / is the weight connecting the j th hidden unit to the i th output unit for
i D 1; 2; : : : ; L and j D 1; 2; : : : ; N ;

• ut D Wxhxt C Whhht�1 is the N � 1 vector of hidden unit input potentials,
vt D Whyht is the L � 1 vector of output unit input potentials, from which we
have ht D f .ut / and yt D g.vt /; where

• f .ut / is the hidden layer activation function (f
0

.ut / is its derivative), and g.vt /

is the output layer activation function (g
0

.vt / is its derivative).

Similar to classic backpropagation we begin by defining the summed squared error
between the actual output, yt , and the target vector, lt , averaged across all time
epochs:

E D c

TX
tD1

klt � yt k2 D c

TX
tD1

LX
j D1

.lt .j / � yt .j //2 (6.52)

where c is a conveniently chosen scale factor and seek to minimise this error w.r.t
to the weights using a gradient descent. For a specific weight, w, the update rule for
gradient descent is:

wnew D w � �
@E

@w
(6.53)
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To do this we define the so-called error propagation term which is the error gradient
w.r.t to the unit input potential:

ı
y
t .j / D � @E

@vt .j /
; ıh

t .j / D � @E

@ut .j /
(6.54)

choose c D 0:5 and then use the chain rule (keeping track of the dependencies) as
follows:

1. For t D 1; 2; : : : ; T compute the input potentials .ut ; vt / and activation outputs
.ht ; yt / given the current RNN weights and input xt (the forward pass).

2. At time layer t D T calculate the error propagation term (where ˇ is the
component-wise multiplication operator):

ı
y
T .j / D � @E

@yT .j /

@yT .j /

@vT .j /
D .lT .j / � yT .j //g

0

.vT .j // for j D 1; 2; : : : ; L

ı
y
T D .lT � yT / ˇ g

0

.vT / (6.55)

at the output units and

ıh
T .j / D �

 
LX

iD1

@E

@vT .i/

@vT .i/

@hT .j /

@hT .j /

@uT .j /

!
D

LX
iD1

ı
y
T .i/why.i; j /f

0

.uT .j // for j D 1; 2; : : : ; N

ıh
T D WT

hyı
y
T ˇ f

0

.uT / (6.56)

for the internal units (where ı
y
T is propagated back from the output layer T ).

3. At the earlier layers, t D T � 1; T � 2; : : : ; 1, calculate the error propagation
term:

ı
y
t .j / D .lt .j / � yt .j //g

0

.vt .j // for j D 1; 2; : : : ; L

ı
y
t D .lt � yt / ˇ g

0

.vt / (6.57)

for the output units and

ıh
t .j / D �

"
NX

iD1

@E

@utC1.i/

@utC1.i/

@ht .j /
C

LX
iD1

@E

@vt .i/

@vt .i/

@ht .j /

#
@ht .j /

@ut .j /

D
"

NX
iD1

ıh
tC1.i/whh.i; j / C

LX
iD1

ı
y
t .i/why.i; j /

#
f

0

.ut .j // for j D 1; 2; : : : ; N

ıh
t D

h
WT

hhıh
tC1 C WT

hyı
y
t

i
ˇ f

0

.ut / (6.58)

for the internal units (where ı
y
t is propagated back from the output layer t , and

ıh
tC1 is propagated back from hidden layer t C 1).
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Then we adjust the weights as follows:

1. For the j th hidden to i th output layer weights at layer t :

wnew
hy .i; j / D why.i; j /��

TX
tD1

@E

@vt .i /

@vt .i /

@why.i; j /
Dwhy.i; j /��

TX
tD1

ı
y
t .i/ht .j /

Wnew
hy D WhyC�

TX
tD1

ıt
yhT

t (6.59)

2. For the j th input to the i th hidden layer weights at layer t :

wnew
xh .i; j / D wxh.i; j /��

TX
tD1

@E

@ut .i /

@ut .i /

@wxh.i; j /
Dwxh.i; j /��

TX
tD1

ıh
t .i/xt .j /

Wnew
xh D Wxh C �

TX
tD1

ıt
hxT

t (6.60)

3. For the j th hidden at layer t C 1 to the i th hidden at layer t weights:

wnew
hh .i; j / D whh.i; j /��

TX
tD1

@E

@ut .i/

@ut .i/

@whh.i; j /
Dwxhh.i; j /��

TX
tD1

ıh
t .i/ht�1.j /

Wnew
hh D WhhC�

TX
tD1

ıt
hhT

t�1 (6.61)

where � is the learning rate.

One drawback of the BPTT is that the entire time series is needed to perform one
update of the weights, thereby making BPTT a “batch” adaptation algorithm. It is
possible to consider an online adaptation if one truncates the past history to no more
than the last p time epochs, creating the BPTT(p) or p-BPTT variant.

The computational complexity of the BPTT is given as O.M 2/ per time
step where M D LN C NK C N 2 is the number of internal units. As with
classic feedforward backpropagation slow convergence can be expected with several
thousand epochs needed. However unlike feedforward backpropagation the BPTT
is not guaranteed to converge to a local minimum and it is far from trivial to achieve
good results without much experimentation and tuning. This is mainly due to the
problem of exploding and vanishing gradients as described in [84].
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6.5.3 The EKF Learning Algorithm

In Sect. 6.2.2 the extended Kalman filter (EKF) was used to provide estimates of
the hidden state variable in the non-linear state-space system described by (6.4)
and (6.5). By reformulating the state-space system such that the hidden state variable
are the RNN weights and the system observations are the target vectors we can use
the EKF as a learning algorithm for the RNN. First popularised in the hallmark work
of [87] we proceed by restacking the L � N Why , N � K Wxh, and N � N Whh

RNN weights into a single, state vector w of size LN C NK C N 2. Then we form
the following state-space system:

w.n C 1/ D w.n/ C q.n/

l.n/ D hn.w.n/; x1Wn/ (6.62)

where l.n/ 	 ln is the target vector and the desired “observation” from the
system at time n, q.n/ is the external input to the system considered as an
uncorrelated Gaussian white noise process, w.n/ are the RNN weights at time n,
and yn 	 hn. Ow.n/; x1Wn/ is the time-dependent RNN output observation function
at time-step n derived from the current RNN weight estimates Ow.n/ and the input
vector sequence x1Wn D .x1; x2; : : : ; xn/. The EKF recursion applied to this system
will estimate the unknown hidden state w.n/, given the “observations” l.n/, by
attempting to minimise the innovation error �.n/ D .l.n/ � hn. Ow.n/; x1Wn// D
.ln � yn/ in the minimum mean square error (MMSE) sense equivalent to the
minimisation of the BPTT squared error of (6.52). The EKF recursion for this
system simplifies to:

K.n/ D P.n/H.n/ŒH.n/T P.n/H.n/	�1

Ow.n C 1/ D Ow.n/ C K.n/�.n/

P.n C 1/ D P.n/ � K.n/H.n/T P.n/ C Q.n/ (6.63)

where K.n/ is the Kalman gain, P.n/ D EŒ.w.n/ � Ow.n//.w.n/ � Ow.n//T is the

state error covariance and H.n/ D @hn.w.n//;x1Wn/

@w

ˇ̌̌
wD Ow.n/

is the Jacobian of partial

derivatives of the RNN output with respect to the weights. The EKF recursion
requires the initial estimates Ow.0/ and P.0/ and a model for the process noise Q.n/.
Typically Ow.0/ is generated randomly, P.0/ is set to a diagonal matrix with a large
diagonal component and Q.n/ is a diagonal matrix with small diagonal variance
terms.

Although the EKF recursion is a very elegant approach exploiting the theory
of optimum Kalman filters, the Jacobian linearisation of the non-linear hn only
guarantees convergence to a local minimum. Furthermore the calculation of the
Jacobian at each iteration time step requires either direct calculation of the gradients,
which is computationally expensive, or the use of an offline run of the BPTT for the
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gradients by backpropagation. The BPTT-EKF executes a reformulated BPTT(p)
over the input data sequence .x1; x2; : : : ; xn/, where the RNN weights w D Ow.n/,
to calculate the gradient @yn

@w for the H.n/. This is followed by one iteration of the
EKF recursion to calculate Ow.n C 1/ and so on. The BPTT-EKF exhibits an order
O.LM 2/ computational complexity per time-step where M D LN C NK C N 2

is the number of internal units and has been shown to exhibit superior convergence
over BPTT and can be considered one of the classic state of the art approaches to
RNN training.

6.6 Comparing Two Types of Dynamic Models

We are now in a position to discuss similarities of and differences between the
two types of deep and dynamic models: (1) the generative deep-structured dynamic
model, which we reviewed in Sect. 6.2, and (2) the discriminative RNN, which we
reviewed in Sect. 6.5. The “deepness” of the models is expressed in terms of the
time steps. Several key aspects are compared below, one in each subsection.

6.6.1 Top-Down Versus Bottom-Up

Top-down modeling here refers to the hierarchical way in which the speech data
are modeled by the generative hidden dynamics. The modeling process starts with
specification of the linguistic label sequence at the top level. Then the label sequence
generates the hidden dynamic vector sequence, which in turn generates the acoustic
observation sequence at the bottom level in the hierarchy. This way of modeling
can be viewed as fitting the observation data. On the other hand, in bottom-up
modeling based on the RNN, the information flow starts at the bottom level of
acoustic observation, which activates the hidden layer or vector dynamics in the
RNN. Then the output layer of the RNN computes the linguistic label or target
sequence at the top level of the hierarchy. Since the top layer determines the speech-
class distinction, the bottom-up modeling approach can also be called discriminative
learning. We elaborate on the top-down versus bottom-up comparisons below.

6.6.1.1 Top-Down Generative Hidden Dynamic Modeling

To facilitate the comparison, we use a general form of the generative hidden
dynamic model following the discussion in Sect. III.A of [33] with slight modifi-
cation, and note that speech recognition researchers have used many variants of
this form to build speech recognizers in the past; see a survey in Sects. III.D and
III.E of [33] and the review in Sect. 6.2. In the discussion provided in this section,
the general form of the state and observation equations in the generative hidden
dynamic model takes the form of



182 L. Deng and R. Togneri

ht D G.ht�1I Wlt ;ƒƒƒlt / C StateNoise (6.64)

xt D H.ht ;���lt / C ObsNoise (6.65)

Here, Wlt is the system matrix that shapes the (articulatory-like) state dynamics,
and ƒƒƒlt serves as the “input” driving force to the state dynamics. Both of them are
dependent on the label lt at time t with segmental properties, hence the model is also
called a (segmental) switching dynamic system. The system matrix is analogous
to Whh in the RNN. ���lt is the parameter set that governs the nonlinear mapping
from the hidden (articulatory-like) states in speech production to acoustic features
of speech. In one implementation, ���lt took the form of shallow MLP weights [35,
86, 101]. In another implementation, ���lt took the form of a set of matrices in a
mixture of linear experts [67].

The state equation in various previous implementations of the hidden dynamic
models of speech does not take nonlinear forms. Rather, the following linear form
was used (e.g., [35], as we discussed in Sect. 6.2.2):

ht D Whh.lt /ht�1 C ŒI � Whh.lt /	tlt C StateNoise (6.66)

which exhibits the target-directed property for the articulatory-like dynamics. Here,
the parameters Whh are a function of the (phonetic) label lt at a particular time
t , and tlt is a mapping from the symbolic quantity lt of a linguistic unit to
the continuous-valued “target” vector with the segmental property. To make the
following comparisons easy, let’s keep the nonlinear form and remove both the state
and observation noise, yielding the state-space generative model of

ht D G.ht�1I Wlt ; tlt / (6.67)

xt D H.ht ;���lt / (6.68)

6.6.1.2 Bottom-Up Discriminative Recurrent Neural Networks
and the “Generative” Counterpart

Let us rewrite (6.50) and (6.51) into a more general form:

ht D F.ht�1; xt I Whh; Wxh/ (6.69)

yt D K.ht I Why/: (6.70)

where information flow goes from observation data xt to hidden vectors ht and then
to the predicted target label vectors yt in the bottom-up direction.

Compared with (6.67) and (6.68), which describe the information flow from the
top-level label-indexed phonetic “target” vector tlt to hidden vectors ht and then to
observation data xt , we clearly see opposite information flows.
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In order to examine other differences between the two types of models in addition
to the top-down versus bottom-up difference, we keep the same mathematical
description of the RNN but swap the variables of input xt and output yt in (6.69)
and (6.70). This yields

ht D F1.ht�1; yt I Whh; Wyh/ (6.71)

xt D K1.ht I Whx/: (6.72)

or more specifically

ht D f1.Whhht�1 C Wyhyt / (6.73)

xt D g1.Whxht / (6.74)

The “generative” version of the RNN can be illustrated by Fig. 6.6, which is the
same as the normal “discriminative” version of the RNN shown in Fig. 6.5 except
all arrows change their directions.

Given the “generative” form of the two types of deep, dynamic models, one (the
hidden dynamic model) described by (6.67) and (6.68), and the other (the RNN)
by (6.71) and (6.72), we discuss below the contrast between them with respect to
the different nature of the hidden-space representations (while keeping the same
generative form of the models). We will also discuss below other aspects of the
contrast between them including different ways of exploiting model parameters.

Fig. 6.6 Information flow in the same recurrent neural network of Fig. 6.5 except we swap the
observation variables with the output variables without changing the mathematical form of the
state-space model
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6.6.2 Localist Versus Distributed Representations

Localist and distributed representations are important concepts in cognitive science
as two distinct styles of data representation. In the localist representation, each
neuron represents a single concept on a stand-alone basis. That is, localist units
have their own meaning and interpretation, not so for the units in distributed
representation. The latter pertains to an internal representation of concepts in such
a way that they are modeled as being explained by the interactions of many hidden
factors. A particular factor learned from configurations of other factors can often
generalize well to new configurations, not so in localist representation.

Distributed representations, based on vectors consisting of many elements or
units, naturally occur in a “connectionist” neural network, where a concept is repre-
sented by a pattern of activity across a number of many units and where at the same
time a unit typically contributes to many concepts. One key advantage of such many-
to-many correspondence is that they provide robustness in representing the internal
structure of the data in terms of graceful degradation and damage resistance. Such
robustness is enabled by redundant storage of information. Another advantage is
that they facilitate automatic generalization of concepts and relations, thus enabling
reasoning abilities. Further, distributed representation allows similar vectors to be
associated with similar concepts and it allows efficient use of representational
resources. These attractive properties of distributed representations, however, come
with a set of weaknesses. These include non-obviousness in interpreting the repre-
sentations, difficulties with representing hierarchical structure, and inconvenience
in representing variable-length sequences. Distributed representations are also not
directly suitable for input and output to a network and some translation with localist
representations are needed.

On the other hand, local representation has advantages of explicitness and ease
of use—the explicit representation of the components of a task is simple and the
design of representational schemes for structured objects is easy. But the weaknesses
are many, including inefficiency for large sets of objects, highly redundant use of
connections, and undesirable growth of units in networks which represent complex
structure.

All versions of the hidden dynamic models for deep speech structure [12, 19,
34, 37, 86, 101] adopt the “localist” representation of the symbolic linguistic units,
and the RNN makes use of the distributed representation. This can be seen directly
from (6.67) for the hidden dynamic model and from (6.71) for the RNN (in the
“generative” version). In the former, symbolic linguistic units lt as a function of
time t are coded implicitly in a stand-alone fashion. The connection of symbolic
linguistic units to continuous-valued vectors is made via a one-to-one mapping,
denoted by tlt in (6.67), to the hidden dynamic’s asymptotic “targets” denoted by
vector t. This type of mapping is common in phonetic-oriented phonology literature,
and is called the “interface between phonology and phonetics” in a functional
computational model of speech production in [19]. Further, the hidden dynamic
model uses the linguistic labels represented in a localist manner to index separate
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sets of time-varying parameters WWWlt and ���lt , leading to “switching” dynamics
which considerably complicates the decoding computation. This kind of parameter
specification isolates the parameter interactions across different linguistic labels,
gaining the advantage of explicit interpretation of the model but losing on direct
discrimination across linguistic labels.

In contrast, in the state equation of the RNN model shown in (6.71), the symbolic
linguistic units are directly represented as one-hot vectors of yt as a function of
time t . No mapping to separate continuous-valued “phonetic” vectors are needed.
While the one-hot coding of yt vectors is localist, the hidden state vector h provides
a distributed representation and thus allows the model to store a lot of information
about the past in a highly efficient manner. Importantly, there is no longer a notion
of label-specific parameter sets of WWWlt and ���lt as in the hidden dynamic model.
The weight parameters in the RNN are shared across all linguistic label classes.
This enables direct discriminative learning for the RNN. In addition, the distributed
representation used by the hidden layer of the RNN allows efficient and redundant
storage of information, and has the capacity to automatically disentangle variation
factors embedded in the data. However, as inherent in distributed representations
discussed earlier, the RNN also carries with them the difficulty of interpreting the
parameters and hidden states, and the difficulty of modeling structure.

6.6.3 Latent Explanatory Variables Versus End-to-End
Discriminative Learning

An obvious strength of the localist representation as adopted by the hidden dynamic
models for deep speech structure is that the model parameters and the latent
(i.e. hidden) state variables are explainable and easy to diagnose. In fact, one
main motivation of many of such models is that the knowledge of hierarchical
structure in speech production in terms of articulatory and vocal tract resonance
dynamics can be directly (but approximately with a clear sense of the degree of
approximation) incorporated into the design of the models [12, 19, 20, 22, 31, 37,
66,68,83,102,106]. Practical benefits of using interpretable, localist representation
of hidden state vectors include sensible ways of initializing the parameters to be
learned (e.g., with extracted formants for initializing hidden variables composed
of vocal tract resonances), and straightforward methods of diagnosing analyzing
errors during model implementation. Since localist representations, unlike their
distributed counterpart, do not superimpose patterns for signaling the presence of
different linguistic labels, the hidden state variables not only are explanatory but also
unambiguous. Further, the interpretable nature of the models allows complex causal
and structured relationships to be built into them, free from the common difficulty
associated with distributed representations. In fact, the hidden dynamic models have
been constructed with many layers in the hierarchical hidden space, all with clear
physical embodiment in speech production; e.g., Chap. 2 in [23]. However, the
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complex structure makes it very difficult to do discriminative parameter learning.
As a result, nearly all versions of hidden dynamic models have adopted maximum-
likelihood learning or data fitting approaches. For example, the use of linear or
nonlinear Kalman filtering (E step of the EM algorithm) for learning the parameters
in the generative state-space models has been applied to only maximum likelihood
estimates [95, 101].

In contrast, the learning algorithm of BPTT commonly used for end-to-end
training of the RNN with distributed representations for the hidden states performs
discriminative training by directly minimizing linguistic label prediction errors. It
is straightforward to do so in the formulation of the learning objective because of
each element in the hidden state vector contributes to all linguistic labels due to
the very nature of the distributed representation. It is very unnatural and difficult to
do so in the generative hidden dynamic model based on localist representations of
the hidden states, where each state and the associated model parameters typically
contribute to only one particular linguistic unit, which is used to index the set of
model parameters.

6.6.4 Parsimonious Versus Massive Parameters

The final aspect of comparisons between the hidden dynamic model and the RNN
concerns different ways to parameterize these two types of models. Due to the
interpretable latent states in the hidden dynamic model as well as the parameters
associated with them, speech knowledge can be used in the design of the model,
leaving the size of free parameters to be relatively small. For example, when vocal
tract resonance vectors are used to represent the hidden dynamics, a dimension
of eight appears to be sufficient to capture the prominent dynamic properties
responsible for the observed acoustic dynamics. Somewhat higher dimensionality is
needed with the use of the hidden dynamic vectors associated with the articulators’
configuration in speech production. The use of such parsimonious parameter sets,
often called “small is good”, is also facilitated by the localist representation of
hidden state components and the related parameters that are connected or indexed
to a specific linguistic unit. This contrasts with the distributed representation in
the RNN where both the hidden state vector elements and the connecting weights
are shared across all linguistic unit, thereby demanding many folds of more model
parameters.

Although most of the current successful RNNs use fewer than one thousand
hidden units and thus fewer than one million weight parameters in the recurrent
matrix, we nevertheless call such parameterization “massive” for the following
reasons. First, they are substantially larger than the set of parameters in any
generative model of speech dynamics in the literature. Second, most of the current
RNNs do not have special structure in their recurrent matrices and thus would not
easily improve their discriminative power by blindly increasing the size of hidden
layers. But with appropriate structure built into recurrent matrices, such as in the



6 Deep Dynamic Models for Learning Hidden Representations of Speech Features 187

“Long-Short-Term-Memory” version of the RNN, increasing the memory units and
thus the parameters is expected to improve classification accuracy more markedly.
Third, the neural network parameterization is not only easy to scale up, but it also
gives regular computations using the same type of matrix multiplication regardless
of the size of the matrices.

The ability to use speech-domain knowledge to construct the model with a
parsimonious parameter set is both a blessing and a curse. Examples of such
knowledge used in the past are the target-directed and smooth (i.e., non-oscillatory)
hidden dynamics within each phone segment, an analytical relationship between the
vocal tract resonance vector (both resonance frequencies and bandwidths), and both
anticipatory and regressive types of coarticulation expressed in the latent space as a
result of the hidden dynamics. With the right prediction of time-varying trajectories
in the hidden space and then causally in the observed acoustic space, powerful
constraints can be placed in the model formulation to reduce over-generation in
the model space and to avoid unnecessarily large model capacity. On the other
hand, the use of speech knowledge limits the growth of the model size as more data
are made available in training. For example, when the dimensionality of the vocal
tract resonance vectors goes beyond eight, many advantages of interpretable hidden
vectors no longer hold. Since speech knowledge is necessarily incomplete, the
constraints imposed on the model structure may be outweighed by the opportunity
lost with increasingly large amounts of training data and by the incomplete
knowledge.

In contrast, the RNN uses hardly any speech knowledge to constrain the model
space due to the inherent difficulty of interpreting the ambiguous hidden state
represented in a distributed manner. As such, the RNN in principle has the freedom
to use massive parameters in keeping with the growing size of the training data.
Lack of constraints may cause the model to over-generalize. This, together with the
known difficulties of the various learning algorithms for the RNN as analyzed in
[6] and reviewed in Sect. 6.5, has limited the progress of using RNNs in speech
recognition for many years until recently. Some recent progress of RNNs applied to
speech recognition involves various methods of introducing constraints either in the
model construction or in the implementation of learning algorithms. For example,
in the study reported in [49], the RNN’s hidden state is designed with memory
units, which, while constraining the variations of the recurrent hidden units and the
associated weight parameters, still allow the massive model parameters to be used
by simply increasing the size of the memory units. Separately, the RNN can also be
constrained during the learning stage, where the size of the gradient computed by
BPTT is limited by a threshold to avoid explosion as reported in [6, 75] or where
the range of the permissible RNN parameters are constrained to be within what the
“echo-state property” would allow [13, 25].
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6.6.5 Comparing Recognition Accuracy of the Two Types
of Models

Given the analysis on and comparisons presented so far in this section between the
generative hidden dynamic model using localist representations and the discrimi-
native RNN using distributed representations, we see both types of models have
respective strengths and weaknesses. Here we compare the empirical performance
of the two types of models in terms of speech recognition accuracy. For consistency
reasons, we use the TIMIT phone recognition task for the comparison since no
other common tasks have been used to assess both types of models in a consistent
manner. It is important to point out that both types of the dynamic models are much
more difficult to implement than other models in more common use for speech
recognition, e.g. the GMM-HMM and DNN-HMM. While the hidden dynamic
models have been evaluated on the large vocabulary tasks involving Switchboard
databases, e.g., [12, 66, 68, 86], the RNN has been mainly evaluated on the TIMIT
task, e.g., [13, 25, 49, 90].

One particular version of the hidden dynamic model, called the hidden trajectory
model, was developed and evaluated after careful design with approximations
aimed to overcome the various difficulties associated with localist representations
as discussed earlier in this section [38–40]. The main approximation involves
using the finite impulse response filter to replace the infinite impulse response
one as in the original state equation (6.67) of the state space formulation of the
model. This version gives 75.2 % phone recognition accuracy as reported in [38],
somewhat higher than 73.9 % obtained by a plain version of the RNN (but with
very careful engineering) as reported in Table I of [90, p. 303] and somewhat
lower than 76.1 % obtained by an elaborated version of the RNN with LSTM
memory units without stacking as reported in Table I of [49, p. 4]. (With less careful
engineering, the plain RNN could only achieve 71.8 % accuracy as reported in [25].)
This comparison shows that the top-down generative hidden dynamic model based
on localist representation of the hidden state performs similarly to the bottom-up
discriminative RNN based on distributed representation of the hidden state. This is
understandable due to the pros and cons of these different types of models analyzed
throughout this section.

6.7 Summary and Discussions on Future Directions

This paper provides an overview on a rather wide range of computational models
developed for speech recognition over the past 20 some years. These models are
characterized by the use of linear or nonlinear dynamics in the hidden space not
directly observed. The temporal unfolding of these dynamic sequence models make
the related networks deep, with the depth being the length of the data sequence
to be modeled. Among all the models surveyed in this chapter, there are two
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fundamentally opposing categories. First, we have the top-down hidden dynamic
models of a generative nature. The hidden state adopts the localist representation
with explicit physical interpretation and the model parameters are indexed with
respect to each of the linguistic/phonetic classes in a parsimonious manner. Second,
we have the bottom-up recurrent neural network (RNN) of a discriminative nature.
The hidden state adopts the distributed representation with each unit in the hidden
state or layer contributing to all linguistic classes.

Sections 6.2 and 6.3 in the early part of this chapter are devoted to the first,
generative type of the dynamic models. Section 6.4 describes an interesting class
of deep neural network models (DNN) where the network with high depth is
constructed independently of the length of the data sequence. In this sense, the
DNN technically does not belong to the class of deep dynamic network models
discussed above. We include the DNN in this chapter not only due to its prominent
role in the current speech recognition practice but also due to the interesting way in
which the generative DBN is integrated into the overall DNN learning. In Sect. 6.4,
we also discuss how sequence dynamics, an essential part for any sensible speech
model, is incorporated into the DNN-based speech model using the HMM as an
interface. Section 6.5 then turns to detailed technical reviews on the second type of
the (true) dynamic and deep network models for speech, the RNN, which is viewed
as a generalization of the DNN where the network’s depth is linked to the length of
the data sequence.

The most important material of the chapter is Sect. 6.6, which compares the
two types of the deep, dynamic models in four incisive aspects. The most critical
aspect of the discussion is the localist versus distributed representations for the
hidden states, with the respective strengths and weaknesses analyzed in detail.
The recognition accuracy achieved by both types of the models is shown to be
comparable between the two, implying that the strengths and weaknesses associated
with the different model types balance out with each other. (We have analyzed the
error patterns and found rather distinct errors produced by the generative hidden
dynamic model and by the RNN although the overall error rates are comparable.)

The comprehensive comparisons conducted in Sect. 6.6 shed insights into the
question of how to leverage the strengths of both types of models while overcoming
their respective weaknesses. Analyzing this future direction is actually the main
motivation of this chapter. The integration of the two distinct types of generative
and discriminative models may be done blindly as in the case discussed in Sect. 6.4,
where the generative DBN is used effectively to initialize or pre-train the discrimi-
native DNN. However, much better strategies can be pursued as present and future
directions, given our sufficient understanding by now of the nature of the respective
strengths and weaknesses associated with the two model types as elaborated in
Sect. 6.6. As an example, one weakness associated with the discriminative RNN,
which we briefly mentioned in Sect. 6.6.2, is that distributed representations are
not suitable for input to the network. This difficulty has been circumvented in
the preliminary work reported in [25] by first using the DNN to extract input
features, which gains the advantages of distributed representations embedded in
the hidden layers of the DNN. Then the DNN-extracted features equipped with
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distributed representations of the data are fed into the subsequent RNN, producing
dramatic improvement of phone recognition accuracy from 71.8 % to as high as
81.2 %. Other ways to cleverly get around the problems with localist representations
in the generative, deep, and dynamic model and the problems with distributed
representations in the discriminative model counterpart are expected to also improve
speech recognition performance. As a further example to this end, we also discussed
in Sect. 6.6 the strength of the localist representation in easy interpretation of the
hidden space of the model. One can take advantage of this strength by using the
generative model to create new features that can be effectively combined with
other features based on distributed representations. Some advanced approximate
inference and learning techniques developed for deep generative models (e.g.,
[97, 105]) may facilitate successful implementations of this strategy by learning
better generative models than the several existing inference and learning methods in
the literature (e.g., variational EM and extended Kalman filtering) discussed earlier
in this chapter.
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Chapter 7
Speech Based Emotion Recognition

Vidhyasaharan Sethu, Julien Epps, and Eliathamby Ambikairajah

Abstract This chapter will examine current approaches to speech based emotion
recognition. Following a brief introduction that describes the current widely utilised
approaches to building such systems, it will attempt to broadly segregate compo-
nents commonly involved in emotion recognition systems based on their function
(i.e., feature extraction, normalisation, classifier, etc.) to give a broad view of the
landscape. The next section of the chapter will then attempt to explain in more
detail those components that are part of the most current systems. The chapter will
also present a broad overview of how phonetic and speaker variability are dealt with
in emotion recognition systems. Finally, the chapter presents the authors’ views on
what are the current and future research challenges in the field.

7.1 Introduction

Speech has played a significant role in the evolution of humans and is probably the
most natural and widely used form of interpersonal communication. While in gen-
eral the primary objective of speech is to convey information encoded as linguistic
content (via one of numerous languages), speech is not completely characterised by
its linguistic content. Factors such as the speaker’s anatomical and physiological
traits, behavioural traits, emotional state, mental state, and cognitive state also
influence speech characteristics and are collectively referred to as paralinguistic
content. Humans are able to both convey and interpret paralinguistic information in
speech with very little effort during the course of any normal conversation (Fig. 7.1).
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Fig. 7.1 Speech based information recognition problems

Research into recognition of paralinguistic information from speech, specifically
emotion recognition systems, has been extremely active for more than a decade
now. However, emotion recognition systems are still not ‘mature’ in the way modern
speech and speaker recognition systems are. One of several possible reasons for this
state of affairs is probably that even the definition of emotions is not a scientifically
settled issue. Given this state of affairs, it is quite possible that emotion recognition
systems of the future could be very different from the various approaches that are
state-of-the-art today. However, state-of-the-art systems today do share a number
of common trends and the aim of this chapter is to elaborate on the common
approaches taken by current emotion recognition systems.

7.1.1 What Are Emotions?

Emotions are specific and consistent collections of physiological responses trig-
gered by internal or external representations of certain objects or situations, such
as a change in the person’s body that produces pain, or an external stimulus such
as the sight of another person; or the representation, from memory, of a person, or
object, or situation in the thought process. There is some evidence to suggest that
the basics of most if not all emotional responses are preset in the genome [1]. In a
broad sense, emotions are a part of the bio-regulatory mechanism that humans have
evolved to maintain life and survive. Emotions form an intermediary layer between
stimulus and behavioural reaction, replacing rigid reflex-like response patterns [2]
allowing for greater flexibility in behaviour [3]. Emotional reactions also serve as a
signalling system between organisms and are essential in acquiring new behaviour
patterns. It has been pointed out that they are a pre-requisite for learning [4, 5]. It
should also be noted that while emotions are often referred to as ‘states’, they are in
fact not static concepts but constantly changing processes. Further, since emotions
may result in significant utilisation of biological resources, emotional states may be
expected to be of relatively short duration [6]. While emotion durations can vary
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greatly (for e.g., a person may experience a few seconds of anger or a day of anger),
survey based studies have found that in general emotion durations are typically in
the order of a few minutes and less than an hour [7, 8].

One of the most widely accepted frameworks for defining emotions is the
component process model [2, 6], which frames emotions as psychological constructs
consisting of synchronised changes in the states of five subsystems in response
to external or internal stimuli. The term ‘components’ refers to the states of the
subsystems, each serving a distinct function (listed below), and the term ‘process’
to the coordinated changes to the states over time that constitute an emotion.

Component Function
Cognitive stimuli appraisal Evaluation of an environment
Neurophysiological processes System regulation
Motivational and behavioural tendencies Preparation of action
Motor expression Communication of intention
Subjective feeling Reflection and monitoring

Based on internal and external stimuli, the state of each of the components is
continuously changing (e.g., the sight of a desirable object will change state of the
cognitive stimuli appraisal component from ‘seeing an object’ to ‘evaluating it as
desirable’; and the state of the motivational component from ‘curious’ to ‘wanting
the object’ and so on). An emotion is then conceptualised as a pattern of state
changes in these components where each component is influenced by the others [2].

A systemic approach to develop a theory of emotions leads to ‘appraisal theories
of emotion’, all of which fit a component-process framework. An overview of
appraisal theories of emotion can be found in [9]. In light of these theories it has been
suggested that automatic emotion recognition should be carried out as appraisal
classification, followed by mapping appraisals to emotions. However this approach
is yet to be realised.

Based on the definition of emotions as including a physiological component,
both voluntary and involuntary effects on the human speech production apparatus
can be expected and the characteristics of vocal expression are the net result of
these effects. It has been noted that characteristics affecting bodily movement
also affect the voice production mechanism and consequently the voice. This is
supported by the observation that the vocal expressions of basic emotions is similar
in many languages [10]. This work also notes considerable parallels between vocal
and physical gestures—for example, an increased tension in the throat causing an
increased loudness of speech paralleling an increased tension of the whole body
in preparation for an imminent fight. An even more innate ‘frequency code’ with
high frequency vocalisation suggesting a submissive attitude and lower frequency
vocalisation suggesting greater size and a more dominant attitude was proposed in
[11]. Demonstrations suggesting that various aspects of a speaker’s physical and
emotional state, including age, sex and personality can be identified by voice alone
are reviewed in [12]. This low-level information is present in even short utterances
and could influence the interpretation of the words being uttered, typically identified
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by “it’s not what he said but the way he said it”. An analogy from communication
interprets the paralinguistic information as an “emotion carrier wave” for the words
[13]. Consequently, emotion can still be recognised even if the linguistic information
is not interpreted, this is further supported by the work reported in [14] noting that
emotion can be recognised from segments of speech as short as 60 ms. Scherer et al.
[15] report an emotion recognition accuracy of 66 % on meaningless multilingual
sentences by listeners from different cultural backgrounds, and interpret this as
evidence for the existence of vocal characteristics specific to emotions.

Various other authors have also hinted at systematic correlations between
emotions and acoustic parameters [16–19]. It should be noted that the relationships
that have been reported in literature are not always consistent across all studies
and may contradict each other. However, most relationships are consistent and
point towards correlations between emotions and acoustic parameters that can be
exploited by an automatic emotion recognition system. To illustrate some emotion-
specific effects, spectrograms corresponding to the word ‘Thousand’ spoken by
the same person without expressing any emotion (Fig. 7.2a); and while expressing
anger (Fig. 7.2b) are shown below. Reviews of research investigating the effect of
emotions on vocal expression can be found in [13, 20–23].

7.1.2 Emotion Labels

One consequence of not having a fully established theory of emotions is that the
question of how to label emotions does not have a straightforward answer. Human
languages contain a large number of ‘emotion denoting’ adjectives. According to
Cowie and Cornelius [24], the Semantic Atlas of Emotion Concepts [25] lists 558
words with ‘emotional connotations’. However, it may be that not all of these terms
are equally important and given the specific research aims it could be possible to
select a subset of these terms fulfilling certain requirements. A number of such
approaches have been proposed including: basic emotions from a Darwinian point
of view, which are shaped by evolution to serve functions that benefit survival [26];
emotion categories chosen on the grounds that they are more fundamental than
others because they encompass the other emotion categories; and asking people
what emotion terms play an important role in everyday life [27].

While the aim of the above mentioned approaches is to reduce the number
of emotion related terms, it has also been argued that emotions are a continuum
and these terms, even a very large number of them, do not capture every shade
of emotion a person can distinguish (even though people would naturally describe
emotional experiences in these categorical terms). The dimensional approach to
emotion categorisation is also related to this line of argument in that it describes
shades of emotions as points in a continuous two- or three- dimensional space.
Some of the earliest (modern) studies involving the dimensional description of
emotions are reported in [28, 29], and in [23], emotional states are described in
terms of a two-dimensional circular space, with axes labelled ‘activation’ (going
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Fig. 7.2 Spectrograms corresponding to the word ‘Thousand’ (Emotional Prosody Speech and
Transcripts database) spoken while expressing (a) no emotion and (b) anger

from passive to active) and ‘evaluation’ or ‘valence’ (going from negative to
positive). An important question with the dimensional approach is then whether
these emotion dimensions capture all relevant properties of the emotion concepts
or if they are simplified and reduced descriptions. Opinion is once again divided,
with Russel et al. [30] claiming that three dimensions emerging from their factor
analysis is ‘sufficient to define all the various emotional states’, while the opposite
view is expressed in [31]. More comprehensive overviews of various descriptive
frameworks can be found in [24, 32].
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Among the different labelling paradigms, the use of categorical labels would be
the one most familiar from everyday life. It is also the most common approach taken
by automatic emotion recognition systems. The subset of categorical emotion labels
that are most frequently used are the following, commonly referred to as the ‘Big
six’ [33, 34].

1. Happiness
2. Sadness
3. Fear
4. Disgust
5. Anger
6. Surprise

An observation that can be made at this point is that, regardless of whether
emotions are labelled with discrete categorical terms or along continuous axes, the
problem of labelling emotions can be concretely formulated. This in turn brings
automatic emotion recognition systems into the realm of possibility.

7.1.3 The Emotion Recognition Task

Given the state of affairs with no settled theory of emotions or even universal
agreement on how emotions should be labelled, it should come as no surprise that
there is no single emotion recognition task. Broadly speaking, the term ‘emotion
recognition’ can refer to either a regression problem or to a classification problem.
Regression systems take a dimensional approach to labelling emotions and aim to
estimate scores along each dimension [35–38]. Systems that take a classification
approach may use either dimensional labelling or discrete labelling for emotions,
and can be further categorised into multi-class and two-class systems. Two class
systems may be either those that determine presence vs. absence of a particular
emotion [39], or those distinguishing between two extremes of a dimension used
to quantify emotion, such as high vs. low arousal or positive vs. negative valence
[40, 41] (Fig. 7.3).

Over the years, a number of different approaches have been taken in the
development of the different kinds of emotion recognition systems listed above.
The good news is that at a high level, the different approaches to the classification
and regression problems have converged to a similar overall scheme, in terms of
feature extraction and classification/regression, for all systems which is the focus of
this chapter.
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Fig. 7.3 Overview of automatic emotion recognition problems

Fig. 7.4 General high-level structure of state-of-the-art emotion recognition system

7.2 Emotion Classification Systems

Most state-of-the-art emotion classification systems are functionally similar at a
high level but can differ quite significantly at a lower level. The first stage generally
involves extraction of low-level features such as MFCCs, pitch, etc. from short
frames (in the order of a few tens of milliseconds) of speech. Following this, a high
dimensional representation of the set of all short term frame based feature vectors
from an utterance is estimated. In most approaches, a VAD, voicing detector or
a similar frame selection process is used and the high dimensional representation
is estimated from some subset of all the short term frame based feature vectors.
Finally, an appropriately trained classifier or regressor in the back-end operates on
this high dimensional representation of a speech utterance in order to determine
emotional class, or estimates of dimensional scores. In addition to this basic setup,
most systems also have additional components for speaker normalisation and/or
channel compensation (Fig. 7.4).
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7.2.1 Short-Term Features

Information about emotional state is expressed via speech through numerous cues,
ranging from low-level acoustic ones to high-level linguistic content. Several
approaches to speech based automatic emotion recognition, each taking advantage
of a few of these cues, have been explored [42–50]. It would be impossible to list all
of them, however, approaches that use linguistic cues [51–53] are not as common as
those that make use of low-level acoustic and prosodic cues due to the complexity
inherent in the accurate estimation of linguistic cues and their language-dependence.

Features representing the common low-level acoustic and prosodic cues are
generally extracted from short-term frames (approximately 20–40 ms). In many
cases, the deltas (�s), and delta–deltas (��s) of these features are appended to them
to form the final feature vector. Deltas (�s) are element-wise first order temporal
differences and delta–deltas (��s) element-wise deltas of deltas, i.e., second order
temporal differences. In addition, other temporal derivatives such as shifted delta
coefficients (SDCs) and deltas based on regression (i.e., slope estimated from a
number of frames on either side of the current frame, instead of just one on either
side) are also utilised in some systems. Short term features commonly used in
speech based emotion recognition systems can be grouped in the following broad
categories:

7.2.1.1 Pitch

Technically the term pitch refers to the fundamental frequency as perceived by a
receiver but in the context of feature extraction it is almost universally used to
refer to the actual fundamental frequency (F0). Typically a single pitch value is
determined from each frame and this may be followed up with some form of post-
processing. Pitch has been shown to play an important role in emotion recognition
[54, 55] and a range of prosodic parameters related to it such as pitch level, pitch
range and jitter have been widely used in emotion recognition systems.

7.2.1.2 Loudness/Energy

The intensity of speech is a measure of the energy contained in speech as it is
produced, which in turn is based on the energy of the vocal excitation. Along
with pitch, loudness based features are the most common prosodic features used
in emotion recognition systems. Loudness of speech as perceived by a listener on
the other hand depends on the sound pressure level (SPL) of the sound waves at the
eardrum (or microphone), which is dependent on both the intensity of the speech and
the distance of between the speaker and the listener (microphone). Consequently,
when using loudness as a measure of vocal excitation intensity, a possibly unrealistic
assumption that the speakers are always at the same distance from the microphone
is being made.
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7.2.1.3 Spectral Features

A number of features may be employed to capture short term spectral characteristics
of speech. These range from single dimensional representations of spectra such
as zero crossing rate, spectral centroid, spectral slope, etc. to multi-dimensional
representations such as a vector of formant frequencies and formant magnitudes,
modulation features, etc.

7.2.1.4 Cepstral Features

Cepstral features are similar to spectral features in that they capture short term
spectral characteristics of speech as well. Cepstral features such as MFCC features
are the most widely used short term features in speech based emotion recognition
systems. Cepstral features tend to differ from spectral features in a couple of
ways. Firstly, cepstral features are generally reasonably detailed (multidimensional)
descriptions of the short term spectrum, while spectral features may be broad or
detailed. Secondly, cepstral feature dimensions are far less correlated with each
other compared to detailed spectral feature dimensions. This reduced correlation
makes them particularly suited for building Gaussian mixture models (GMMs) and
hidden Markov models (HMMs) where each state is modelled by a GMM.

7.2.2 High Dimensional Representation

The short term features by definition are incapable of capturing information about
long-term temporal evolution of speech parameters. Even with the inclusion of delta
features (and its variants), each short-term feature vector represents less than a
tenth of a second of speech. This shortcoming is widely recognised and automatic
emotion recognition systems generally deal with it in one of two ways. One
approach is to use appropriate back-ends, which are capable of modelling patterns
of sequences of features vectors, such as hidden Markov models, or neural networks
with memory to model temporal patterns of the short-term features. This approach
is outlined in Sect. 7.2.4. The more widely used approach however is to estimate
a sequence of short-term feature vectors from each utterance and then compute a
high dimensional representation of the utterance from the sequence of short-term
feature vectors. The high dimensional representation is generally designed to be
representative of the statistical properties of short-term features across the entire
utterance and take into account long-term temporal patterns. It should be noted
that in this approach information about the long-term temporal patterns may not
be captured if the high-dimensional representation is not appropriately designed.
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Fig. 7.5 Estimating high dimensional representation of an utterance using functionals (typically
statistical descriptors)

7.2.2.1 Functional Approach to a High-Dimensional Representation

The most widely used method for estimating a high dimensional representation
of an utterance involves evaluating a range of appropriate functionals (typically
statistical descriptors) of the different dimensions of the short-term features (see
Fig. 7.5) [56]. As an example, extracting 13-dimensional MFCC feature vectors
using 20 ms frames with 50 % overlap from an utterance of duration 2 s results in
199 vectors of 13-dimensions. Functionals may then be evaluated on each of the 13
dimensions across the 199 values (such as the maximum value of the first MFCC
element across all 199 feature vectors) to form each element of a high-dimensional
representation. Hence, if N functionals are evaluated on a set of T feature vectors of
D dimensions, the resultant high-dimensional representation is an ND dimensional
vector. It is important to note that the dimensionality of this vector is independent of
utterance length (and consequently the number of frames, T). This essential property
simplifies classifier/regressor design since all decisions are made based on a single
fixed dimensional vector.

Given a sufficiently large number of functionals, the high-dimensional represen-
tation can easily span tens or hundreds of thousands of dimensions. This is generally
followed by a dimensionality reduction stage where typically feature selection
algorithms are employed to identify and extract the most important dimensions.
An overview comparing a number of short-term features and functionals utilised
in current state-of-the-art systems can be found in [57]. The ‘traditional’ approach
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to building speech based classification systems have typically involved handpick-
ing/designing low-dimensional features based on prior knowledge of the problem
domain. The approach outlined in this section automates this process of manually
selecting and evaluating features from a large pool of possible descriptions.

7.2.2.2 GMM Supervector Approach to High-Dimensional Representation

An alternative approach to obtaining statistical descriptions of short-term features
is to estimate the underlying probability distribution of the short-term features and
use a parametric representation of this distribution. Most state-of-the-art speaker
identification and language identification systems take this approach and utilise
Gaussian mixture models (GMMs) as parametric models of feature distributions
[58, 59]. Generally MFCC C � C �� (or similar features) which provide detailed
descriptions of short-term spectra while containing relatively decorrelated fea-
ture dimension are the most commonly modelled short-term features. Given that
Gaussian mixture models are powerful representations of feature distributions and
given the wealth of variability compensation and discriminative training techniques
available for use with GMM systems, the use of GMM supervectors to represent
utterances in emotion recognition systems is a promising avenue of investigation. It
should also be noted that this approach promises competitive performance despite
predominantly using only cepstral features [60].

In general, GMM supervectors are estimated by first training a Gaussian mixture
model, referred to as a universal background model (UBM), on generic speech
representative of the style that is expected to be confronted by the operating emotion
recognition system and preferably from many different speakers if the emotion
recognition system is expected to work with multiple speakers. This UBM is then
adapted (via MAP adaptation) towards each utterance to obtain an estimate of a
model of the feature distributions corresponding to them. A GMM supervector is
a vectorial representation of the parameters of these models. In the common case
where only the UBM means are adapted via MAP adaptation, the GMM supervector
is composed by concatenating the means of each mixture component of the adapted
GMM (see Fig. 7.6).

A number of variability compensation techniques that have been developed
for GMM based systems in the context of speaker and language identification
tasks may be utilised to compensate for undesired feature variability due to non-
emotional factors such as the linguistic content (what is being said) and speaker
differences (who is saying it). Some of these variability compensation methods are
outlined in Sect. 7.3. It should be noted that while GMM supervector based system
constitute the state-of-the-art in speaker identification and language identification,
most current emotion recognition systems utilise classification systems based on
high-dimensional representation composed of functionals evaluated on short-term
features as outlined in Sect. 7.2.2.1.
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Fig. 7.6 Estimating GMM supervectors as a high dimensional representation

7.2.3 Modelling Emotions

Current literature contains examples of a variety of classifiers that have been
employed by emotion recognition systems. Based on their approach, these classifiers
may be either generative models or discriminative functions. Generative classifiers
try to model the distribution of the training data (features) from each class (emotion)
individually (i.e., the models of each class are based only on data from that class
and not from any other class). Pattern matching involves estimating some measure
of closeness of the unknown data to each of the models and then selecting the class
whose model is closest to the data. Some generative classifiers used in emotion
recognition are:

• Gaussian mixture models (GMM) [61–63]
• Hidden Markov models (HMM) [63–66]
• Probabilistic neural networks [63, 67]

Unlike generative classifiers, which attempt to model the entire feature space for
each class, discriminative classifiers attempt to maximise a discriminative function
between the different classes without modelling the distribution of the entire feature
space. Examples of used discriminative classifiers commonly utilised in emotion
recognition systems are:
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• Support vector machines (SVM) [63, 68–71]
• Decision trees and Random forests (ensemble of tress) [72–74]
• Neural networks (NN) [56, 75, 76]

In general, since generative classifiers attempt to model the probability distribu-
tions of the feature space, they all tend to suffer from the curse of dimensionality
and are not suitable for modelling high dimensional feature spaces. Among the
discriminative classifiers, by far the most commonly utilised choice for emotion
classification based on high dimensional representations is support vector machines,
owing to the nature of their operation, the existence of efficient training methodolo-
gies and the large number of kernels that they may utilise to match the properties of
the feature space. They have been shown to outperform other common classifiers in
some emotion recognition problems [77].

7.2.3.1 Emotion Models: Linear Support Vector Machines

Fundamentally, support vector machines are binary (two-class) classifiers. Multi-
class classification problems are tackled by decomposing the problem into a number
of two-class problems, each of which is then addressed by a support vector machine.
Training a linear SVM (conceptually non-linear SVMs are an extension to linear
SVMs and will be discussed later) involves estimating the hyperplane in the feature
space that best separates training feature vectors of the two classes in terms of
‘support vectors’ (shown in two feature dimensions in Fig. 7.7). Support vectors are
feature vectors from the training set (of either class) that are close to the best linear

Fig. 7.7 Conceptual overview of linear support vector machines (SVM)
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boundary between the two classes such that the separating hyperplane is defined as
a linear combination of these support vectors. Classification (in the test phase) is
then carried out by determining which side of the hyperplane the test vector lies on.
Further, distance from the hyperplane may be used as an estimate of confidence of
the decision. The distance, dw .x/ of a vector (x) from the hyperplane, w, may be
estimated as:

dw .x/ D
NsX

iD1

˛ibxT
i x C b (7.1)

Where,bxi 2 RN are the ith support vectors in the N dimensional feature space,
Ns is the number of support vectors, b 2RN is the offset of the hyperplane from
the origin, and ˛i are the weights corresponding to the ith support vector. A positive
value of dw corresponds to one class and a negative value to the other.

7.2.3.2 Emotion Models: Nonlinear Support Vector Machines

Nonlinear support vector machines are conceptually identical to linear SVMs with
one difference. Instead of operating in the feature space, the features are mapped to a
different space (typically of higher dimensionality) via a nonlinear transform and the
best hyperplane on the transformed space is used for classification (see Fig. 7.8). The
distance of a test vector from the hyperplane in the transformed space is given by

bd w .x/ D
NsX

iD1

˛i ˆ
�bxi
�T

ˆ .x/ C bˆ (7.2)

Fig. 7.8 Nonlinear SVM involves a nonlinear transformation of the original feature space
followed by a linear separation in the transformed space which corresponds to a nonlinear boundary
in the original space
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Where, ˆ :RN !RM is the nonlinear transformation from the original N dimen-
sional feature space to the M dimensional transformed space (typically, M 
 N).

The ‘kernel trick’ for nonlinear SVMs refers to the use of a kernel function that
operates on pairs of vectors in the original space to give the inner product of the
corresponding pair of vectors in the transformed space. i.e.,

bd w .x/ D
NsX

iD1

˛i Kˆ

�bxi; x
�C bˆ (7.3)

Where, Kˆ :RN �RN !R is the kernel function corresponding to the transfor-
mation ˆ(�) such that Kˆ

�bxi; x
� D ˆ

�bxi
�T

ˆ .x/. This allows nonlinear support
vector machines to be used without actually transforming the feature vectors
into a high dimensional space since Kˆ(�,�) operates directly on the original
feature space. In addition, when the kernel function, Kˆ (which defines ˆ or vice
versa), is appropriately chosen the underlying transformed space maybe an infinite
dimensional space.

Support vector machines are adept at handling high dimensional feature spaces,
which makes them particularly suited to current emotion recognition systems that
involve a front-end which estimates a high dimensional representation of utterances.
Also, in general SVM training is formulated as a convex problem and consequently
the training algorithm may be globally optimal [78]. However, a drawback to using
SVMs is that there is no systematic approach to selecting the best kernel function.
Often emotion recognition systems that make use of support vector machines choose
the kernel function and its parameters heuristically. Some commonly chosen kernels
include the linear kernel, the polynomial kernel, the radial basis kernel and the KL
divergence kernel. It should be noted that the KL divergence kernel is a common
choice in other fields of speech processing, particularly speaker verification. The use
of linear support vector machines on GMM supervectors is equivalent to using a KL
divergence kernel in the underlying feature space of the GMMs [79]. A comparison
of the performance of some common kernels in an SVM based approach to emotion
recognition using GMM supervectors can be found in [80]. Descriptions of emotion
recognition systems that use SVM based classifiers can be found in [53, 68, 81], and
comparisons between support vector machines and other classifiers can be found in
[50, 82].

7.2.4 Alternative Emotion Modelling Methodologies

As previously mentioned, currently the most widespread approach to emotion
recognition involves the estimation of short-term (frame level) features from each
utterance. This set of feature vectors is then represented by a single high dimensional
vector which is then used to make a decision. However, this approach is by no
means the only one or even a single, rigorously defined system. A minor variation
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involves the addition of other features which are extracted at time scales larger than
a frame but smaller than an utterance, which are also incorporated into the high-
dimensional representation. Some of these features that are commonly utilised in
current systems are described in Sect. 7.2.4.1. An alternative approach focusses on
dynamic modelling of short term features using an appropriate back-end, such as
a hidden Markov model (HMM) instead of the static modelling approach taken by
the high-dimensional approach. This approach is briefly outlined in Sect. 7.2.4.2.
Finally, some systems directly model the distribution of the short term features
using back-ends such as Gaussian mixture models (GMM) instead of abstracting
utterance level information to a high dimensional representation. In place of this
abstraction, these systems tend to use other methods to compensate for variability
in short term features that arise due to reasons other than emotions. Some of these
compensation methods may also be used in the other approaches and are briefly
outlined in Sect. 7.3.

7.2.4.1 Supra-Frame Level Feature

In addition to the short-term (frame level) features outlined in Sect. 7.2.1, other
features, estimated at time frames longer than a frame but shorter than an utterance,
are also commonly utilised in emotion recognition systems. These may generally be
categorised as follows:

Voice Quality Features

While there is no generally accepted definition of voice quality, the term has been
used to refer to the auditory impressions of the listener that are not accounted
for by measurable parameters. For instance, voice types such as hoarse, harsh and
breathy are considered voice qualities. Some, but not all of these qualities have been
associated with the shape of the glottal pulse [83]. Commonly used voice quality
features include jitter and shimmer that capture variations in pitch and energy, noise-
to-harmonics ratio (HNR) and autocorrelation features. Most of these features are
estimated from short sequences of frame level measures.

Linguistic Features

A range of features that capture linguistic patterns which may be characteristic
of emotions are collectively referred to as linguistic features. The most common
among these include bag-of-words (BOW) features, which are vectors comprising
of counts/frequencies of occurrence of words from a predefined vocabulary, bag-of-
N-grams, which are similar to BOW, and parts-of-speech (POS) features, which are
representations of frequencies of word classes/part of speech.
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Non-linguistic Acoustic Events

Descriptions of non-linguistic acoustic events are comparatively rare compared to
linguistic features. They include descriptions of occurrence and position of events
such as disfluencies, breathing, laughter etc. within an utterance.

An overview of a range of short and long term features can be found in [50] and a
comparative study between different types of features can be found in [57]. Similar
features have also been utilised in other paralinguistic classification systems [84].

7.2.4.2 Dynamic Emotion Models

Speech signals are quasi-stationary (within short intervals of around 20 ms) and
sequentially varying in time (over periods longer than 20 ms) in order to express
information. Dynamic modelling of these sequential patterns is the corner stone of
automatic speech recognition (ASR) systems and a possible approach to modelling
emotional content. In ASR, hidden Markov models (HMMs) are the most commonly
utilised dynamic models of feature sequences due to their generative stochastic
framework and the existence of a range of techniques that may be employed to
train, adapt and modify them. Hidden Markov models have also been employed in
a number of emotion recognition systems [64, 66, 68, 85, 86], although they are not
used as widely as the static modelling approach involving high-dimensional rep-
resentations of utterances. Some comparative studies have suggested that dynamic
modelling via HMMs are less suited to the task of emotion recognition than the
static modelling approach outlined previously (Fig. 7.4) in some contexts [40, 87].

A hidden Markov model (HMM) is a doubly stochastic model with an underlying
stochastic process that is not directly observable (hidden), but is linked through
another set of stochastic processes that produces an observable sequence of symbols.
In the context of pattern classification, a sequence of features (observable symbols)
is modelled as being generated by a sequence of states (the number of possible states
is finite and unrelated to the number of possible observable symbols) which is not
directly observable. At every time instant (corresponding to each of the features
in the sequence), the model enters a new state (which may be the same state as
the previous one) based on a transition probability distribution which depends on
the previous state (Markovian property) and generates the observation (feature) at
that instant based on a probability distribution that is associated with that state
(regardless of when and how the state is entered). The possible observations (single-
or multi-dimensional) may belong to a discrete (and finite) or a continuous set, and
thus giving rise to discrete and continuous HMMs respectively.

Any HMM is characterised by the state transition probability distribution, the
initial state distribution, and the state observation probability distributions. The state
observation pdfs in a continuous HMM are usually modelled by Gaussian mixture
models (GMMs). The problem of estimating the parameters of a HMM is a difficult
one and does not have an analytical solution. Typically iterative procedures, such
as the Baum–Welch method, are used. An overview of hidden Markov models
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including the Baum–Welch method to estimate the models can be found in [88].
Apart from HMMs, other dynamic modelling approaches include recurrent neural
networks (RNN) [89], which are standard feed forward neural networks with
additional feedback connections. The feedback connections allow for the existence
of some sort of memory in the system and allow for past inputs in influence decisions
made about the present input. A drawback of recurrent neural networks is that the
magnitude of the influence of past inputs may decay or increase exponentially over
time and the long short-term memory recurrent neural networks (LSTM-RNN) [90]
were introduced to overcome this problem [91]. LSTM-RNN have also been used
as dynamic models in speech based emotion recognition systems [41, 56]. LSTM-
RNNs have also been used to build systems that tackle the regression problem with
dimensionally labelling of emotions [35].

7.3 Dealing with Variability

Perfect features that are completely representative of emotions (or any other class
of interest in any speech based problem) and no other factors are non-existent.
Consequently emotion recognition systems may either attempt to choose features
that exhibit low levels of variability due to other factors or they may compensate
(implicitly or explicitly) for this variability. It is reasonable to assume that two
major sources of variability that would affect an emotion recognition system are
phonetic variability (variability in features reflecting what is being said) and speaker
variability (variability in features reflecting characteristics of the speaker) and
these are the focus of this section. These additional sources of variability in turn
affect the ‘classification rules’ inferred by the back-end and degrade classification
performance [92–94].

Given that feature spaces in emotion recognition systems are almost universally
of a larger dimensionality than three, variability in the feature space cannot be
directly visualised. However, some sort of visualisation could be useful to illustrate
the ideas discussed in this section and hence the t-SNE algorithm [95] is employed
to map feature spaces onto a 2-dimensional plane and scatter plots of the mapped
points are shown. The t-SNE algorithm aims to preserve the local structure of the
data and perhaps illuminate some of the global structure such as the presence of
clusters. It does so by mapping Euclidean distances between data points in both the
high (original feature space) and low (mapped 2-dimensional space) dimensional
spaces to probability distributions and matching them [95].

7.3.1 Phonetic Variability in Emotion Recognition Systems

The durations of phonemes are typically in the range of tens of milliseconds to a few
hundreds of milliseconds. Most speech recognition systems model these phonemes
with a three (or five) state hidden Markov model, each state of which is designed to
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be representative of a (quasi)stationary sequence of feature vectors. Consequently
phonetic variability would manifest as short term variability. i.e., variations in short
sequences of feature vectors. The duration of emotions are however significantly
longer, spanning multiple words or utterances. From the point of view of emotion
recognition systems aiming to discriminate between the longer term properties of
features corresponding to emotions, the effect of phonetic variability would be
akin to noise in the short term feature space. While the most obvious approach to
dealing with phonetic variability is to explicitly compensate for it, most current
emotion recognition systems deal with it implicitly. Specifically, the commonly
undertaken approach of obtaining a high dimensional representation using function-
als (Sect. 7.2.2.1) of the set of short term feature vectors from an utterance imparts a
level of robustness against phonetic variability. This can be explained by the fact that
the statistical descriptors that constitute the high-dimensional representation capture
global (utterance level) characteristics while being relatively unaffected by local
variations (across a few frames corresponding to phonetic durations). Scatter plots of
frame level features (Fig. 7.9a) and utterance level high dimensional representations
obtained using functionals (Fig. 7.9b) projected onto 2-dimensions (using the t-SNE
algorithm) are depicted here to illustrate this idea. Both the frame level and utterance

Fig. 7.9 Scatter plots of vectorial representations projected onto 2-dimensions using t-SNE
algorithm (a) frame level MFCC feature; (b) utterance level high dimensional vector of functionals;
(c) utterance level GMM supervectors (Data from IEMOCAP—blue corresponds to ‘Anger’, cyan
to ‘Happiness/Excited’, yellow to ‘Sadness’ and maroon to ‘Neutral’)—The high dimensional
utterance level representations are more robust to phonetic variability and exhibit tighter emotion
clusters
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level representations were extracted from speech data from the IEMOCAP database
[96], containing four emotions from ten different speakers.

Using a GMM (Gaussian mixture model) supervector to represent an utterance
(Sect. 7.2.2.2) would also be similarly robust since the GMM approximates the
probability distribution of the features, which is insensitive to frame-to-frame
variations when reliably estimated over a sufficient number of frames. Further,
if suitably detailed spectral/cepstral features (such as MFCCs) are used, a GMM
estimated on sufficient speech can serve as a universal background model (UBM),
whose structure captures the acoustic/phonetic landscape. This UBM can then
be adapted (MAP adaptation) to match the statistical properties of any target
speech. Emotion recognition systems that use these adapted GMMs, either through
the use of supervectors or by directly using them as emotion models, operate
on the differences between the models including phoneme-specific differences.
Consequently they are less affected by phonetic variability that is common across
all of emotions. This robustness to phonetic variability also underpins the GMM-
UBM approach to speaker recognition. Figure 7.9c shows a scatterplot of GMM
supervector representations of speech from the IEMOCAP database [96] projected
onto 2-dimensions using the t-SNE algorithm.

7.3.2 Speaker Variability

Speaker characteristics change very gradually over a period of years or decades.
Hence, from the point of view of an emotion recognition system, the influence
of speaker characteristics on speech features can for all intents and purposes be
considered a complex but constant effect over the duration of an utterance and across
all utterances from the same speaker. This is in contrast to phonetic variability,
which manifests as characteristic variability over short sequences of frames.

As previously mentioned, most state-of-art emotion recognition systems implic-
itly cater to phonetic variability. However, this is not true of speaker variability and
consequently speaker variability appears to be a more significant issue, that needs
to be explicitly dealt with, in many commonly utilised features [97]. An attempt to
quantify speaker variability in terms of speaker specific changes to emotion models
(using GMMs) is reported in [61], with results suggesting that at least a part of the
variability manifests as speaker specific shifts in feature vector clusters.

Approaches to compensate for speaker variability in emotion classification
systems can be broadly categorised into those that explicitly personalise the systems
towards a target speaker or those that alter the feature vectors or models of their
distributions to minimise the effect of speaker variability on them (refer Fig. 7.10).
The former category includes systems with back-ends trained exclusively on data
from the target speaker [67], i.e., speaker dependent systems, and those with a
generic back-end that is then suitably adapted towards target speakers [98, 99]. The
latter category consists of techniques, referred to herein as speaker normalisation
techniques, which aim to reduce speaker variability either in the feature domain or
in the domain of models of feature distributions.
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Fig. 7.10 Overview of the different approaches to dealing with speaker variability

Fig. 7.11 Conceptual
illustration of speaker
normalisation

7.3.2.1 Speaker Normalisation

If the feature vectors corresponding to different emotions can be thought of as
occupying different regions of the feature space (with the amount of overlap being
proportional to the confusability between the overlapping emotions), the distribution
of these regions is speaker-specific to some degree. Therefore models trained on data
from one (or more) speaker(s) may not coincide with the regions corresponding to
another and hence result in lower classification accuracy. Speaker normalisation can
then be thought of as an attempt to address this issue by modifying the feature
vectors for each speaker in a manner such that the emotion regions for different
speakers align in the modified feature space (dashed ellipses in Fig. 7.11).

Feature normalisation methods may operate either in the feature domain or
in the model domain. Both aim to minimise the effect of speaker variability on
the statistical properties of the feature vector distributions. Specifically, feature
domain techniques modify feature vectors directly [100–102] while model domain
techniques modify the representation of models (such as supervectors) [103, 104].
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7.3.2.2 Speaker Adaptation

Speaker adaptation techniques are motivated by the inability to perfectly separate
effects of speaker variability from that of emotion variability. This observation
is supported by the observation that speaker independent emotion classification
systems do not perform as well as speaker dependent ones even if they incorporate
speaker normalisation. Rather than normalise the features in order to minimise the
mismatch between trained models and the test speaker, an alternative approach is
to adapt the emotion-specific models of the back-end towards a target speaker. This
is potentially superior to normalisation since it does not remove any information
from the feature space. It is also perhaps the only approach that models both
phonetic and speaker information (for e.g., using GMMs of sufficient complexity
to model phonetic information followed by the use of MAP adaptation to create
speaker specific models). An adaptation approach can adapt initial emotion models
estimated from training speakers’ data to match the target speaker. Compared to the
speaker normalisation approach conceptualised in Fig. 7.11, speaker adaptation can
be thought of as attempting to modify initial models to match the regions of the
target speaker (Fig. 7.12).

Two (related) key drawbacks of the speaker adaptation approach when compared
with speaker normalisation are that (a) some speech from the target speaker is
required for adaptation prior to the system being used and; (b) the approach is only
applicable if there is one target speaker for a system (that is initially trained on a
large dataset and adapted to the target speaker), or if there is a small pool of known
target speakers and the identity of the speaker is known at the time of operation.
Descriptions of speaker adaptation approaches proposed for emotion recognition
can be found in [98, 104].

Fig. 7.12 Conceptual
illustration of speaker
adaptation approach
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7.4 Comparing Systems

Unlike in some fields of speech processing, such as speaker verification and
language identification, there is no standardised system of evaluation paradigms
that allow emotion recognition systems to be directly compared. This is further
exacerbated by the fact that the term emotion recognition can refer to more than one
type of problem as previously mentioned (refer Sect. 7.1.3). While there has been
some effort to address this situation in the form of emotion challenges [70, 71], these
are still in their infancy. Further, even when different publications report recognition
accuracies evaluated on the same database with the same metric, they may still not
be directly comparable if they define the training and test sets differently. However
over the years some databases have been utilised more than others and in many cases
researchers use consistent definitions of training and test sets. Also, the existence of
a large variety of databases has certain advantages as well. Specifically, different
databases exhibit different characteristics allowing a wider range of issues to be
explored than would be possible if all researchers worked on a single database
[40, 105, 106]. This diversity in characteristics among database also motivates the
use of multiple databases in serious investigations of emotion recognition systems.
Overviews of commonly used databases can be found in [50, 107]. Finally, over
the past 5 years there have been emotion recognition challenges [70, 71] which
invited researchers to submit systems evaluated in an identical manner to allow
direct comparisons, and these have helped address some of the above issues.

The submissions to the INTERSPEECH 2009 challenge are collectively one of
the largest groups of directly comparable systems that classify emotions according
to basic categorical labels, and some of them are listed in Table 7.1 to highlight
some of the different approaches taken by emotion recognition systems. The 5-class
classification accuracies of the systems are reported in terms of unweighted average
recall (UAR) which was the metric used in the challenge, and is perhaps currently
the most widely used metric for quantifying the accuracy of categorical emotion
classification systems. The unweighted average recall (UAR) is defined as follows:

UAR D 1

C
CX

iD1

�i

Ni

(7.4)

Where, C is the number of classes (emotions), Ni is the total number of
test samples corresponding to emotion i and �i is the number of test samples
corresponding to emotion i that were classified correctly. When the test set is
balanced, i.e., when there are an equal number of test samples from each class,
the UAR is equivalent to the weighted average recall (WAR) which is the ratio
of the total number of correctly classified test samples to the total number of test
samples. The advantage of using the UAR over the WAR is that when the test set
is not balanced, UAR values are not skewed by classification performance within
a dominant class (a class with a large number of test samples compared to other
classes). It weights each class accuracy equally, or in other words, class accuracies
are not weighted by the number of test samples when averaged.



220 V. Sethu et al.

Table 7.1 Comparison of system approaches taken to INTERSPEECH 2009 emotion challenge
(List and UAR taken from [94])

System highlights
Five-class
UAR (%)

Kockmann et.al. [60] – MFCC C SDC C feature normalisation
– GMM supervector
– JFA channel (speaker) variability compensation

41.7

Bozkurt et. al. [108] – Spectral C cepstral features C deltas
– HMM posterior probabilities as features
– GMM emotion models
– Linear fusion of GMM likelihoods

41.6

Lee et. al. [109] – Hierarchical binary tree classification structure
– Bayesian logistic regression/SVM classifiers
– High dimensional feature representation with

functionals
– Z-norm feature normalisation

41.6

Vlasenko and Wendemuth [110] – MFCC C deltas C delta–deltas
– VTLN C CMS feature normalisation
– HMM based models

41.4

Luengo et. al. [111] – Spectral features C GMM subsystem
– Prosodic features C SVM subsystem
– High dimensional feature representation with

functionals
– SVM based fusion

41.4

Planet et. al. [112] – Spectral C voice quality features
– High dimensional feature representation with

functionals
– Feature selection
– SMO and naïve Bayes classifiers

41.2

Dumouchel et. al. [113] – MFCC C deltas C delta–deltas
– GMM emotion models

39.4

Vogt and André [114] – Cepstral C spectral C prosodic C voice quality
features

– High dimensional feature representation with
functionals

– Feature selection
– Naïve Bayes classification

39.4

Barra Chicote et. al. [115] –
MFCC C pitch C energy C deltas C delta–deltas
– Dynamic Bayesian network based classification

38.2

An interesting observation that can be made from Table 7.1 is that a number
of very different system approaches produced similar results. This is in contrast to
other fields of speech processing such as speech recognition, speaker verification
and language identification, all which have just a few well established dominant
approaches. It should be noted that UAR as a performance metric does not shed
any light on how accurate a system is at detecting/classifying individual emotions.
Confusion matrices are much more suited for this purpose. However, not every
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system submitted to the challenge reported a confusion matrix and general trends
were hard to discern from the ones that were reported. A follow up emotion
recognition challenge, to classify emotions according to categorical labels, on a
different dataset was held as part of Interspeech-2013 [71] and descriptions of
systems submitted to this challenge can be found in [116–119].

Given the current state of research into emotion recognition, it is advisable when
conducting experiments on novel emotion recognition systems to (1) include a well-
known feature set in the experimental work, even if only as a point of reference
with which to compare a new feature set; (2) include a well-known classifier in
the experimental work, even if only as a point of reference with which to compare
a newly proposed classifier; (3) analyse at least two databases, at least one of
which should preferably be well known in the literature and easily available to
other researchers; (4) clearly explain how the various database partitions have
been used; (5) use at least one well-known evaluation metric (e.g. UAR); and (6)
during discussion, make every effort to try to compare new results with previously
published results.

7.5 Conclusions

This chapter has presented an overview of current approaches to speech based
emotion recognition systems. Specifically, rather than provide descriptions of
complete systems, the chapter describes common techniques and outlines where
they are commonly used in emotion recognition systems. This approach was taken
due to the lack of any single established dominant approach and is instead an attempt
to identify critical concepts and techniques common to many of current approaches.

Given the lack of a universally accepted ‘theory of emotions’, together with the
expense and subjectivity of emotional database annotation, it is not surprising that
the field of speech based emotion recognition is not as mature as other fields of
speech based research such as speech and speaker recognition. This state of affairs
also means that systems that are considered state-of-the-art today may be completely
revamped in the future. Finally, while the identification of the optimal approach to
emotion recognition is the ultimate goal of the field, a number of intermediate goals
can be identified which would lead to this ultimate goal. Some research challenges
that are most closely associated with the ideas discussed in this chapter are:

• There are many different types of emotion recognition applications and even
approaches (various categorical and ordinal classification and regression configu-
rations). There is no definitive formulation of the ‘emotion recognition problem’,
although categorical classification between the ‘big five’ emotions is currently
popular.

• Emotion recognition systems in general implicitly or explicitly account for both
phonetic and speaker variability. Even if the most promising approaches to
emotion recognition seem superficially simple (e.g. brute-forced functionals of
features with tuned SVM), there is still research to be conducted to better explain
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the means by which these account for variability and why they are successful.
Understanding this better might be expected to lead to further improvements in
system design.

• There is a fairly wide gap between speaker independent and speaker dependent
classification performance and it is not clear how this gap may be bridged.

• Perhaps more than any other major speech classification application, there is
an ongoing problem of comparability between published papers, which are
mostly disjoint with respect to the features and/or classifiers and/or data sets
that are investigated. Community recognition of the need for ‘reference’ features,
classifiers and databases is still emerging.

• In the absence of a single, suitably large and varied ‘default’ emotion recognition
database, system evaluation on multiple databases and cross-database testing
offers the promise of robustness against overfitting due to aggressive tuning of
hyperparameters.

A few other contemporary challenges and observations that are relevant to the
field but not directly related to the concepts outlined above include:

• It is not clear what emotion recognition systems will or should look like as
the amount of data tends towards infinity. Unlike speech recognition or speaker
recognition, collecting but especially labelling emotion data is expensive and
not definitive. However, annotation of emotional data on a massive scale can
be expected at some point in the coming years.

• Emotion recognition is a stepping stone to a huge array of mental state/speaker
trait/speaker attitude/speaker intention classification and regression problems
(whose solutions have many similarities with emotion recognisers), many of
which are only just beginning to be investigated. Some may well eclipse emotion
recognition in terms of commercial importance.

• What is the optimal timescale over which emotions should be annotated? Is it
possible to estimate likely points of emotion onset, offset and transition? If so,
how should this be done?

• Attempts to ‘break’ emotion recognition systems, at least as a learning exercise
should be encouraged. For instance, how badly does a system perform with even
slightly different parameter choices and why?, how does performance vary across
different speakers, how bad does it get?, etc.

• What can be learnt about characteristics of emotions from simpler, prototypical
datasets such as neutral vs anger? (while avoiding the dangers inherent in
focusing too much on small sets of strong prototypical emotions).

• What, if any, measures of confidence of decision may be obtained and how can
they be used in applications?

• Why is recognition/regression along the valence axis harder than along the
arousal axis and what is the best approach to deal with this?

In addition to these, some further speculative challenges include:

• Can more complex states, which combine more than one emotion or mental
state, be recognised, and if so, how? For example, speaker intent might involve
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more than one emotion (similar to the ‘overlapping emotion’ issue). Also,
in some cases a complex state may comprise a sequence of emotions, e.g.
surprise followed by happiness, or frustration alternating with anger. This might
be analogous to the relationship between a phoneme recogniser and a speech
recogniser.

• How quickly can emotions be accurately recognised? Successful human inter-
action often depends on an extremely rapid assessment of the mood of the
conversational partner. Can this be done?

• Can psychological, psychiatric and/or emotional intelligence measures be esti-
mated using emotion recognition style systems? For example, can they be used
to assess an individual’s impulse control or working memory or characteristics
such as dominance, defensiveness, outbursts, etc. in conversation?

• If extremely rich data are available for certain individuals that allow for
estimation of very accurate speaker-dependent models, can these be leveraged
to obtain more accurate recognition for an unknown (newly presenting) speaker?
It is very likely that large scale emotion annotation might occur for only very
small numbers of people either as a research or a commercial reality.

• What devices will incorporate emotion recognition systems in the future, and
hence what additional modalities (for e.g., facial expression, eye activity, phys-
iological responses, muscle tension, touch, etc.) should be investigated more
closely in terms of their connection with emotional speech? Further, how may
these modalities be optimally incorporated into emotion recognition systems?

• Can the emotion of a group of people be recognised? Can the emotional dynamics
of the group be modelled?
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Chapter 8
Speaker Diarization: An Emerging Research

Trung Hieu Nguyen, Eng Siong Chng, and Haizhou Li

Abstract Speaker diarization is the task of determining “Who spoke when?”,
where the objective is to annotate a continuous audio recording with appropriate
speaker labels corresponding to the time regions where they spoke. The labels are
not necessarily the actual speaker identities, i.e. speaker identification, as long as the
same labels are assigned to the regions uttered by the same speakers. These regions
may overlap as multiple speakers could talk simultaneously. Speaker diarization
is thus essentially the combination of two different processes: segmentation, in
which the speaker turns are detected, and unsupervised clustering, in which
segments of the same speakers are grouped. The clustering process is considered
as unsupervised problem since there is no prior information about the number of
speakers, their identities or acoustic conditions (Meignier et al., Comput Speech
Lang 20(2–3):303–330, 2006; Zhou and Hansen, IEEE Trans Speech Audio Process
13(4):467–474,2005). This chapter presents the fundamentals of speaker diarization
and the most significant works over the recent years on this topic.

8.1 Overview

Figure 8.1 shows the typical components of a speaker diarization system. The signal
processing module applies standard techniques such as: pre-emphasis, noise reduc-
tion and/or beamforming to improve the signal-to-noise ratio (SNR) and to reduce
undesired noises. The feature extraction module transforms the raw audio signal into
feature vectors in which speaker-related characteristics are captured and unintended
properties such as noises are suppressed. Subsequently, only useful feature vectors
are retained for further processing. These vectors are generally corresponding to
speech frames and the selection of these frames is implemented in the speech activity
detection (SAD) module. Finally, at the heart of a speaker diarization system is
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Fig. 8.1 Typical components of a speaker diarization system

the clustering architecture which defines the strategies and approaches to perform
speaker clustering from the unlabeled feature vectors. These important components
are covered thoroughly in the upcoming sections.

8.2 Signal Processing

Signal processing techniques are typically applied to raw signals to produce well
calibrated signals suitable for specific tasks. Among such techniques, speech
enhancement are commonly used in many speaker diarization systems to enhance
the SNR and attenuate interferences. Depending on the availability of audio chan-
nels, single or multi-channel processing techniques could be employed for these
purposes, and the common approaches are: (1) Wiener filtering and (2) acoustic
beamforming.
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8.2.1 Wiener Filtering

Given two processes: sŒk	 the signal to be estimated, and yŒk	 the observed noisy
signal, which are jointly wide-sense stationary, with known covariance functions
rsŒk	, ryŒk	, and rsyŒk	 respectively. A particular case is that of a signal corrupted by
additive noise nŒk	:

yŒk	 D sŒk	 C nŒk	 (8.1)

The problem is to estimate the signal sŒk	 as a function of yŒk	. A widely adopted
solution to this problem is Wiener filtering [150], which is used to produce an
estimate of desired signal by linear time-invariant filtering an observed noisy signal,
assuming known stationary signal and noise spectra, and additive noise. Wiener
filtering gives the optimal way of filter out the noisy components, so as to give the
best L2-norm reconstruction of the original signal. Interested readers may refer to
[150] for the solutions.

In the speaker diarization community for the NIST Rich Transcription evaluation
[41–43], the Qualcomm-ICSI-OGI front end [6] is commonly used to perform
Wiener filtering. Most state-of-the-art speaker diarization systems [47,101,127,153]
applied Wiener filtering to all audio channels for speech enhancement before filtered
and summed to produce a beamformed audio channel. In van Leeuwen and Konečný
[79], the filtering, however, was applied after beamforming. The authors observed
no difference in performance with the benefit of reduction in computational cost
since only one channel was processed.

8.2.2 Acoustic Beamforming

In the scenarios where multiple audio channels are accessible, each one can have
different characteristics, and the recorded audio quality therefore varies across the
channels. For speaker diarization, one may select the best quality channel, for
e.g. the highest signal to noise ratio (SNR), and work on this selected signal
as traditional single channel diarization system. However, a more widely adopted
approach is to perform acoustic beamforming on multiple audio channels to derive
a single enhanced signal and proceed from there. The techniques for acoustic
beamforming is a broad field of research on its own. Nevertheless, due to the nature
of diarization task where a priori information such as microphone types and their
positions are not given, robust and simple techniques are thus preferred. The favored
approach, which are commonly used in many systems in NIST Rich Transcription
Evaluation for meeting domains, is adaptive beamforming with filter-and-sum
technique, a more general version of delay-and-sum beamforming. For clarity, the
procedures for filter-and-sum beamforming technique are summarized here.
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Given an array of M microphones, the filter-and-sum output z at instance k is
defined as:

zŒk	 D
MX

mD1

Wm Œk	 ym

�
k C �m Œk	

�
(8.2)

where ymŒk	 is the signal for each channel and �mŒk	 is the relative delay between
each channel and the reference channel at instance k, WmŒk	 is the relative weight
of microphone m at instance k with

PM
mD1 WmŒk	 D 1. The time delay of arrival

(TDOA) �mŒk	 is commonly estimated via cross-correlation methods such as
generalized cross correlation with phase transform (GCC-PHAT) [69] as presented
in Sect. 8.3.2.

For researchers who are not in the field of array processing, there are several
freely available implementations of beamforming source code on the web and
one such popular toolkit used by many researchers in the recent NIST 2009 Rich
Transcription evaluation benchmark is known as BeamformIt [11]. The toolkit
implemented an enhanced delay-and-sum algorithm, together with many multichan-
nel techniques described in [91] which are rather relevant to speaker diarization
research. The techniques include: automatic selection of reference microphone
channel for GCC-PHAT computation, adaptive weighting of channel based on SNR
or cross-correlation metric, and two-pass Viterbi decoding for smoothing spurious
TDOA values. These techniques are applied to stabilize the TDOA values before the
signals are beamformed.

8.3 Feature Extraction

Raw speech signal is normally converted into a sequence of feature vectors carrying
characteristic information about the signal; this step is referred to as feature
extraction. In the field of speaker diarization, as well as speaker recognition in
general, the information that we want to retain is the speaker-related properties.
Many types of features have been studied in the literature; commonly used features
for speaker diarization could be broadly organized into two categories: (1) acoustic
features, and (2) sound-source features.

8.3.1 Acoustic Features

Speech is produced when air is forced from the lungs through the vocal cords and
along the vocal tract. Different speech sounds are generated by varying the shape
of the vocal tract and its mode of excitation. The variations occur relatively slowly
in the order of 20 ms. Thus, for short frames of 20–30 ms, speech signal can be
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considered to be quasi-stationary and the short-term features are extracted to model
the shape of the vocal tract or the excitation or the combination characteristics of
both.

8.3.1.1 Short-Term Spectral Features

Short-term spectral features are based on the spectral envelope, the shape of the
discrete Fourier transform (DFT) magnitude spectrum, of a short time windowed
frame of speech (typically 20–30 ms). The effectiveness of these features are based
on the observations that:

• The phonetic segments in speech appears as energy fluctuation over time in
different frequency bands. This is useful for representing the phonetic contents
in speech recognition.

• The spectral envelope contains information about the resonance properties of
the vocal tract which depends on both phonetics and speakers. This is the most
informative part of the spectrum in speaker recognition.

Popular spectral features are Mel Frequency Cepstral Coefficients (MFCC)
[31], Linear Prediction Cepstral Coefficients (LPCC) [85] and Perceptual Linear
Prediction Cepstral (PLPC) Coefficients [56]. These features differ mainly in the
analysis of time-frequency and in the techniques for frequency smoothing.

In frequency analysis, an important notion is critical-band [10] which refers
to the capability of human auditory system to localize and process information
within the frequency range. The detection of signals within this frequency range
is not sensitive to and less affected by interference signals outside of this critical
bandwidth. This bandwidth is non-linearly dependent on frequency and a number
of functions approximating these critical bandwidths were proposed, among which,
two popular functions are Bark scale [164] and Mel scale [126]. MFCC filter
bank follows Mel frequency scale, whereas in PLPC, the spectrum is filtered by
a trapezoidal-shaped filter bank with Bark frequency scale.

Another differential factor among various spectral features is the frequency
smoothing techniques being used. The frequency smoothing techniques are gener-
ally applied to enhance and preserve the formant information, which are the pattern
of resonances and can be observed from the spectral envelope. To capture this
pattern, the spectral envelope in MFCC features is derived from the FFT power
spectrum, while in LPC and PLPC, the spectrum is approximated by a linear
predictor with all-pole model.

For MFCC, LPCC and PLPC feature extraction, in the final step the spectral
representation is transformed to cepstral coefficients, in which the coefficients are
nearly orthogonal. This property is desirable as it is beneficial for modeling purpose
and leads to significant reduction in the number of parameters to be estimated.
Particularly, when using Gaussian or Gaussian mixtures model, diagonal covariance
matrices with uncorrelated components could be used instead of full covariance
matrices.
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Given these alternative features, however, MFCCs, sometimes with their first
and/or second derivatives, are more widely adopted in the community of speaker
diarization research. In contrast to speech recognition, higher order cepstral coef-
ficients are retained since they capture more speaker-specific information, yet
there is no consensus on the order of MFCCs. Typically, 16–20 coefficients are
used in most of the current state-of-the-art diarization systems [45, 47, 119, 146].
Nonetheless, Ajmera and Wooters [9] reported the diarization results using both
LPCC and MFCC features. They observed that LPCCs perform better during clean
speech, while MFCCs work better in case of noisy conditions. In another attempt,
Wooters et al. [152] compared the performance of MFCC and PLP features, with
the empirical evidence that MFCCs slightly outperform PLPs.

Apart from these common spectral features, some lesser known features were
also explored for speaker diarization task in the literature. The LIA system [92, 93]
performed speaker segmentation using 20th order linear cepstral features (LFCC)
augmented by the energy.

8.3.1.2 Prosodic Features

Prosodic features are supra-segmental, they are not confined to any one segment, but
occur in some higher level of an utterance. Prosodic units are marked by phonetic
cues including pause, pitch, stress, volume, and tempo. The most important prosodic
feature is the fundamental frequency (F 0). Other common prosodic features are:
duration, speaking rate, and energy distribution/modulations [117]. Combining
prosodic features with spectral features has been shown to be effective for speaker
verification, especially in noisy condition. Recently, these features have been
adopted in several speaker diarization systems and showed promising results. In
El-Khoury et al. [38], a difference between the averages of the F 0 between speech
segments was calculated and used as merging criterion for bottom-up clustering.
In Friedland et al. [48], the authors investigated the speaker discriminability of
70 long-term features, most of them prosodic features. They applied Fisher Linear
Discriminant Analysis (LDA) to rank these 70 prosodic and long-term features by
their speaker discriminative power. The authors showed improvement in speaker
diarization results when combining the top-ten ranked prosodic and long-term
features with regular MFCCs. In a recent paper, Imseng and Friedland [59] proposed
the use of prosodic features to obtain initial clusters, which are crucial in many
state-of-the-art agglomerative speaker diarization systems. The proposed approach
achieved significant improvement over the baseline system.

8.3.2 Sound Source Features

When multiple microphone recordings are accessible, the relative time delay of
arrival (TDOA) between the different microphones can be estimated. Assuming the
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speakers are not changing position, those features can be used in speaker diarization
[99]. It has been shown that TDOA improves the speaker diarization significantly in
combination with conventional spectral features [100].

Given a pair of microphones i and j , let xi Œk	 and xj Œk	 be the windowed signals
from microphone i and j respectively. The cross-correlation matrix between the two
signals is defined as

Rxi xj Œ� 	 D E
n
xi Œk	 � x�

j Œk � �	
o

(8.3)

where Ef:g denotes the expectation. In practice, it is estimated as

Rxi xj Œ� 	 D 1

2N

NX
kD�N

xi Œk	 � x�
j Œk � �	 (8.4)

where N is the length of the windowed signals (in terms of number of samples),
for reliable estimation, the window size is typically at least 500 ms. It is generally
assumed that the signals picked up by the two microphones i and j are similar with
one being the delayed version of the other by a time �ij . �ij is then estimated by
maximizing the cross-correlation function:

�ij D arg max
�N ���N

Rxi xj Œ� 	 (8.5)

In real applications, however, there are many external factors such as ambient noises,
reverberation etc. that could affect the estimation of time delay and it is shown
that cross-correlation is not robust against these issues. To address this problem,
Knapp and Carter [69] introduced a general version named the Generalized Cross-
Correlation (GCC), which is defined as:

Rxi xj Œ� 	 D E
n�

hi Œk	 � xi Œk	
� � �hj Œk � �	 � x�

j Œk � �	
�o

(8.6)

where hi Œk	 and hj Œk	 are the filter coefficients. It is apparent from the GCC
equation that it is simply the cross-correlation computed on the filtered signals.
Generally, GCC for long windowed signals is computed in the frequency domain
for efficiency. The generalized cross power spectral density (GXPSD) [69] can be
expressed as:

ˆxi xj Œl 	 D �
Hi Œl	Xi Œl	

� � �Hj Œl	Xj Œl	
��

(8.7)

where Xi , Xj , Hi , Hj are the discrete Fourier transform of xi , xj , hi , and hj

correspondingly, with l being the discrete frequency index. Rearranging the above
equation

ˆxi xj Œl 	 D Hi Œl	H
�
j Œl	Xi Œl	X

�
j Œl	 (8.8)

D ‰ ij Xi Œl	X
�
j Œl	 (8.9)
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where

‰ ij D Hi Œl	H
�
j Œl	

being the weighting function. Various weighting functions have been studied in the
literature including: Roth filter [112], the smoothed coherence transform (SCOT)
[26], the phase transform (PHAT) [69], the Eckart filter [37], and the Hannon and
Thomson filter [69]. For general applications, PHAT is widely adopted as it is shown
to be robust against a wide range of conditions [69]. Its definition is:

‰PHAT
ij Œl 	 D 1

jXiŒl	X
�
j Œl	j (8.10)

In summary, the time delay �ij between microphone i and j can be estimated as:

ˆxi xj Œl 	 D Xi Œl	Xj �Œl 	

jXiŒl	X
�
j Œl	j (8.11)

Rxi xj Œ� 	 D F�1
˚
ˆxi xj Œl 	


(8.12)

�ij D arg max
�N ���N

Rxi xj Œ� 	 (8.13)

with F�1f:g denoting the inverse Fourier transform.

8.3.3 Feature Normalization Techniques

8.3.3.1 RASTA Filtering

RASTA filtering [57] is mainly applied to removes slow channel variations. It is
equivalent to a band-pass filtering of each frequency channel through an IIR filter
with the transfer function:

H.z/ D 0:1 � 2 C z�1 � z�3 � 2z�4

z�4 � .1 � 0:98z�1/
(8.14)

Filtering could be performed in either log spectral or cepstral domain. In the
cepstral domain, the low and high cut-off frequency define the frequency range in
which the cepstral change within this range is preserved. RASTA is applied on the
MFCC features before estimating speaker models in the MIT Lincoln Laboratory
diarization systems [110].
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8.3.3.2 Cepstral Mean Normalization

Cepstral Mean Normalization (CMN) is typically employed to minimize the effect
of session variations, which occur with the change of channel characteristics. It is
calculated by first estimating the cepstral mean across an utterance or a window of
N frames and then subtracting the mean from each cepstral vector to obtain the
normalized vector. As a result, the long-term average of any observation sequence
(the first moment) is zero. When the audio stream is processed online, a dynamic
CMN approach is applied, where the cepstral mean �k at time k is updated as
follows:

�k D ˛CŒk	 C .1 � ˛/�k�1 (8.15)

where ˛ is a time constant (typically, around 0.001), CŒk	 is the cepstral vector at
time k and �k�1 is the dynamic cepstral mean at time .k � 1/. In Reynolds and
Torres-Carrasquillo [110], MFCC features for each cluster is processed with CMN
to increase robustness against channel distortion in their offline speaker diarization
systems. While in Zamalloa et al. [158], the dynamic CMN approach is applied in
their online speaker tracking system.

8.3.3.3 Feature Warping

In order to avoid the influence of background noises and other non-speaker related
events, feature warping is proposed to condition and conform the individual feature
streams such that they follow a specific target distribution over a window of speech
frames. Normally, the target distribution is chosen to be following Gaussian shape
[102]. In the context of speaker diarization, Sinha et al. [123] and Zhu et al. [161]
apply this normalization technique for each short segment using a sliding window
of 3 s in the clustering stage.

8.4 Speech Activity Detection

Speech activity detection (SAD) identifies audio regions containing speech from
any of the speakers present in the recording. Depending on the domain of the data
being used, the non-speech regions may contain silence, laughing, music, room
noise, or background noise. The use of a speech/non-speech detector is an important
part of speaker diarization system. The inclusion of non-speech frames into the
clustering process makes it difficult to correctly differentiate between two speaker
models. SAD could be broadly classified into four categories: (1) energy-based
speech detection, (2) model based speech detection, (3) hybrid speech detection,
and (4) multi-channel speech detection.
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8.4.1 Energy-Based Speech Detection

Many energy-based speech detectors are proposed in the literature, however, with
the diverse environments of audio recordings, the non-speech can be from a
variety of noise sources, like paper shuffling, coughing, laughing, etc. energy-based
methods have shown to be relatively ineffective in speaker diarization task [60,138].
Nevertheless, with its simplicity and speed, this approach has been adopted in
several systems. In [27], Cassidy defines a threshold based on root mean square
(RMS) and zero crossing rate (ZCR) of the audio signal to separate speech and
silence.

8.4.2 Model Based Speech Detection

With the limitation of energy-based approach, in general, model based speech/non-
speech detectors are frequently used in many speaker diarization systems as they
are able to characterize various acoustic phenomena. The simplest system uses
just two models for speech and non-speech such as in Wooters et al. [152]. A
more complex system is described in Nguyen et al. [97] with four speech models
including gender/bandwidth combinations. Noise and music are explicitly modeled
in Gauvain et al. [51], and Zhu et al. [162]; the systems comprise of five classes:
speech, music, noise, speech + music, and speech + noise. The speech + music
and speech + noise models are used to help minimize the false rejection of speech
occurring in the presence of music or noise, and this data is subsequently reclassified
as speech [51, 54, 123, 162]. The classes can be broken down further, as in Liu
and Kubala [81], there are five models for non-speech (music, laughter, breath,
lip-smack, and silence) and three for speech (vowels and nasals, fricatives, and
obstruents). In Meignier et al. [90], the acoustic segmentation system are designed
in a hierarchical approach to provide finer classification. First, speech/non-speech
is detected then the speech class is further classified as clean speech, speech with
music, and telephone speech. Each category is subsequently separated by gender
and two additional models representing female and male speech recorded under
degraded conditions are then included to refine the final segmentation.

8.4.3 Hybrid Speech Detection

The model-based approach, however, has its own limitation: its models need to
be trained with pre-labeled data using training set. This requires the data to be
annotated with class labels and this process takes much effort. Moreover, depending
on the complexity of the models, there might not be enough data to build these
models. The performance of these models on unseen data (which in statistical



8 Speaker Diarization: An Emerging Research 239

Fig. 8.2 Hybrid energy-based and model-based speech activity detector

machine learning is known as the term generalization) is also an important issue
especially in the case where testing data is substantially different from development
data. To mitigate these problems, the hybrid approach is proposed. This approach
comprises of two stages: the first stage is a simple energy-based detector, the
second stage is a model-based detector in which the models are trained on the
test data itself, hence no training data is required. Figure 8.2 depicts a typical
structure of a hybrid energy-based and model-based speech activity detector. In
Anguera et al. [12, 16], the speech/non-speech regions were first detected by an
enhanced energy-based SAD with low pass filtering in conjunction with duration
constraint using finite state machine (FSM). From these labels, a Hidden Markov
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model (HMM) were constructed with two states: a single Gaussian for modeling
silence, and a Gaussian Mixture Model (GMM) for modeling speech. The detector
then iteratively classifies the audio frames and re-trains both models until the overall
likelihood converges. The proposed approach performs sufficiently well, however,
in a more diverse environments, using energy-based detector to obtain initial labels
may place some restrictions on the system as it is not possible to detect high energy
noises. An improved speech detector is then suggested in Huijbregts et al. [58],
and Wooters et al. [153] which are able to detect distinct non-speech segments. In
this system, speech, silence or non-speech sounds regions are first detected by pre-
trained models on broadcast news. Those regions with high confidence scores are
then split to three classes: speech, non-speech with low energy, non-speech with
high energy and high zero crossing rate. Three models are built up iteratively, and
the audio is re-segmented a number of times.

8.4.4 Multi-Channel Speech Detection

In recent years, with the increasing availability of multi-channel audio, there have
been a number of related efforts toward multi-speaker speech activity detection. In
Wrigley et al. [154, 155], the authors performed a systematic analysis of features
for classifying multi-channel audio into four sub-classes: local channel speech,
crosstalk speech, local channel and crosstalk speech, and non-speech. They looked
at the frame-level classification accuracy for each class with various features
selected for analysis. A key result from this work is that, from among the 20 features
examined, the single best performing feature for each class is one derived from
cross-channel correlation. This result evidences the importance of cross-channel
information for multi-channel detection task. Pfau et al. [104] proposed an ergodic
HMM (eHMM) speech activity detector and as a post-processing step, the authors
identified and removed crosstalk speech segment by thresholding cross-channel
correlations which yields 12 % relative frame error rate (FER) reduction. In [74],
Laskowski et al., proposed a scheme using a cross-channel correlation speech/non-
speech detection. This scheme was later used in a multi-channel speech activity
detection system that models vocal interaction between meeting participants with
joint multi-participant models [73, 75, 76].

8.5 Clustering Architecture

Speaker clustering seeks to group all audio frames, segments from the same speakers
together [159]. Ideally, this process produces one cluster for each speaker with
all segments of a given speaker assigned to a single cluster. Different diarization
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systems adopt different strategies for speaker clustering. However, in a broad
sense, the clustering architectures fall into one of these categories: (1) offline
architecture, or (2) online architecture. In offline architecture, all the feature vectors
are observable by the system at all times and the algorithm could optimize through
multiple iterations with no constraint on the execution time. While in online
architecture, the features are presented to the system only when the data is available,
the algorithm has no knowledge about the future and generally there is constraint on
the latency, the time difference between when the result is obtained and when the
data is available. Figure 8.3 illustrates the hierarchical clustering approach, which
is the most popular clustering approach for offline speaker diarization systems. The
following sections then discuss the components of various clustering architectures,
with focus on offline speaker diarization systems and well-established approaches.
Online speaker clustering architectures are discussed separately in Sect. 8.5.5 as
not all mentioned techniques are suitable for real-time processing and special
considerations are called for.

Fig. 8.3 Hierarchical
clustering architecture
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8.5.1 Speaker Modeling

At the heart of many speaker diarization systems is the choice of speaker modeling
technique. As diarization is a part of speaker recognition, many modeling techniques
in speaker verification and identification are also applicable. In this section,
however, we only include those which have been adopted and shown to be effective
for diarization tasks.

8.5.1.1 Gaussian Mixture Model

Since Gaussian Mixture Model (GMM) was initially introduced in the context of
speaker modeling by Reynolds et al. [109], it has become the standard reference
method in speaker recognition. A GMM is a probability distribution that is a convex
combination of several Gaussian distributions. The mixture density is:

f .x/ D
KX

kD1

˛kfk.x/ (8.16)

where

• K is the number of mixtures.
• ˛k is the prior probability of mixture k such that

PK
kD1 ˛k D 1

• fk.x/ is the component density of Gaussian distribution parametrized by mean
�k and covariance †k :

fk.x/ D 1p
.2�/d j†kjexp


�.x � �k/t †�1
k .x � �k/

2

�
(8.17)

with d being the dimension of the feature vector and j†kj being the determinant
of †k .

Given a sequence of observation vectors, the parameters of a GMM can be trained
via the Expectation Maximization (EM) algorithm [35] to maximize the likelihood
of the data. In speech processing, it is generally assumed that the observations in
sequence X D fx1; : : : ; xN g are independent and identically distributed (i.i.d.).
Accordingly, the likelihood of a GMM parametrized by ‚ given observations
sequence X is computed as:

p.Xj‚/ D
iDNY
iD1

p.xi j‚/ (8.18)

In practice, many systems restrict the covariance matrices of the GMM to be
diagonal, since it is computationally expensive and requires more training data to
estimate the parameters of a full-covariance GMM.
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The choice of K , the number of mixtures, is highly empirical as there is no
consistency among different systems [23, 79, 127, 153]. In the ISCI agglomerative
speaker diarization systems [9, 18, 152], the authors suggested the use of variable
complexities. The systems were initialized with a fixed number of Gaussian
mixtures for all cluster models. Upon merging any two clusters, the new cluster
model is generated with the complexity as the sum of both parent’s Gaussian
mixtures. Later, in [15], Anguera et al. proposed the concept of cluster complexity
ratio (CCR), which assumes that the number of mixtures is linearly proportional
to the number of features in the clusters, to initialize this parameter. Based on
the similar assumption, in Leeuwen and Konečný [79], the constant seconds per
Gaussian (CSPG) was used to determine the number of mixtures.

Mono-gaussian model uses a single Gaussian component with either full or
diagonal covariance matrix as speaker model. Modeling with mono-gaussian is
computationally efficient since only a small number of parameters need to be esti-
mated. Although the accuracy is clearly behind GMM, it is sometimes the model of
choice due to: lack of training data, or limitation on computational resource. In many
speaker segmentation systems [14, 86], since the speaker segments are relatively
short, mono-gaussian models with full covariance matrices were employed to detect
speaker change points. In others [92, 93], diagonal covariance matrices were used.
Reynolds and Torres-Carrasquillo [110] performed bottom-up clustering with BIC
metric and mono-gaussian models with full covariance.

8.5.1.2 Hidden Markov Model

The Hidden Markov Model (HMM) [105] is a generative probabilistic model
comprising of a finite number internal hidden states and these states are not visible
to observer. Each hidden state is associated with an emission probability distribution
and an observation can be generated according to this distribution. In speech
processing, Gaussian or mixture of Gaussians are commonly used to model the
emission probabilities. The transitions among hidden states are assumed to follow
the first-order Markov process, they are specified by a transition probability matrix
and an initial state distributions.

Formally, a HMM is completely specified by f…; A; ‚g with:

• A set of parameters of emission distribution conditioned on the hidden states:
‚ D f‚1; : : : ; ‚N g with N being the number of states.

• A matrix of transition probabilities

A D

0
BB@

a11 : : : a1N

:::
: : :

:::

aN1

: : : aNN

1
CCA (8.19)

where aij is the transition probability from state i to state j .
• The initial state distributions … D f�1; : : : ; �N g
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In this chapter, ƒ D f…; A; ‚g is denoted as the parameters of the HMM. When
used for speech, the HMM usually has a left-to-right topology. Given a sequence of
observation vectors X, the parameters of the HMM are trained using EM algorithm
to maximize the likelihood:

ƒ� D arg max
ƒ

p .Xjƒ/ (8.20)

The best hidden state sequence qbest is derived using the Viterbi algorithm [148],
i.e.:

qbest D arg max
q

p .X; qjƒ/ D arg max
q

p .Xjq; ƒ/ � p .qjƒ/ (8.21)

The likelihood of an observation vector xn given state qk , p.xnjqk/, is generally
modeled by a GMM.

The HMM-based speaker clustering framework was first presented by Ajmera
et al. in [7]. Since then, it has been widely adopted in most state-of-the-art speaker
diarization systems [23, 79, 153]. The LIA speaker diarization system [92, 93] also
used HMM with different topology for speaker modeling. In their system, there
is no duration constraint, each state of the HMM characterizes a speaker and the
transitions model the speaker turns. On the other hand, Kim et al. [67] performed
re-segmentation by applying a HMM-based classifier on segments of 1:5 s each with
the assumption that no speaker change within each segment.

8.5.1.3 Total Factor Vector

With the success of the total variability approach in the task of speaker verification
[32], it has been recently adapted to the problem of speaker diarization [118]. In
this modeling technique, a speaker utterance is represented by a supervector M that
consists of components from the total variability subspace, contains the speaker and
channel variabilities simultaneously.

M D m C Tw C " (8.22)

where M is a speaker and session dependent supervector, a supervector in this
context is a stacked mean vectors from a GMM [25], and m is the speaker and
session independent supervector commonly adapted from the Universal Background
Model (UBM) supervector. In the speaker recognition terminology, the UBM is
a large GMM (in terms of 512–2048 mixtures), trained on speech from many
speakers (several hundred to several thousand), to represent the speaker independent
distribution of acoustic features [108]. Matrix T is the rectangular matrix of low rank
which contains the eigenvectors with the largest eigenvalues of the total variability
covariance matrix, w is a low-dimensional random vector having a standard normal
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distribution N .0; I /, and the residual noise term " covers the variabilities not
captured by T [66]. The vector w, with dimension in order of hundreds compared
to the dimension in order of thousands of a supervector, is referred to as a total
factor vector, an identity vector or an i-vector. In short, this modeling technique
can be seen as a simple factor analysis for projecting a speech utterance from high-
dimensional supervector space to the low-dimensional total variability space. Once
projected to low-dimensional space, the applicability of many machine learning
algorithms are then more straight forward.

Probably, the first attempt to make use of i-vector in the context of speaker
diarization was presented by Shum et al. in [118]. In this paper, good diarization
results on summed-channel telephone data with two speakers were reported with
various dimensions of the i-vector from 40 to 600, in conjunction with Principal
Component Analysis (PCA) for further dimension reduction and cosine distance
metric for scoring. In the later work also by Shum et al. [120], the authors applied
i-vector in the framework of spectral clustering [96] to extend the solution to
diarization of telephone data with unknown number of participating speakers. In
[122], with the motivation that the estimation of i-vectors for short segments is not
reliable and may harm the clustering process especially at early phases, Silovsky
and Prazak employed the two-stage clustering approach, using i-vector in the
second stage, while the first stage using GMM for speaker modeling. They reported
performance improvement over the standalone i-vector system. In [114], Rouvier
and Meignier re-defined the speaker clustering as a problem of Integer Linear
Programming (ILP) based on i-vectors and conclude that i-vector models are more
robust than GMMs.

8.5.1.4 Other Modeling Approaches

8.5.1.4.1 Supervector

Supervector often refers to combining many low dimensional vectors into a higher
dimensional vector. In speaker recognition terminology, supervector typically refers
to Gaussian supervector [25], formed by stacking all the mean vectors of an
adapted GMM. Supervector is widely used in many speaker verification systems
together with support vector machine (SVM) classifier. These combinations have
been shown to be effective and robust in many situations, probably due to the
ability to capture the speech utterance statistics of supervector as well as the
generalization capability of SVM in high dimensional space. In Tang et al. [128],
supervector was used with either Euclidean or cosine distance metric to measure
the distance among different speakers. These distances are then used to learn
the speaker-discriminative acoustic feature transformation and the discriminative
speaker subspace. They reported that the speaker clustering methods based on the
GMM mean supervector and vector-based distance metrics outperform traditional
methods based on statistical model and statistical model-based distance metrics.
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8.5.1.4.2 Eigen Vector Space Model

Eigen vector space model (EVSM) [133] is inspired from the eigenvoice approach
[71]. Each cluster is first modeled by a supervector, then all the super vectors are
projected to a lower subspace by applying Principal Component Analysis (PCA) to
obtain new supervectors with reduced dimension. These newly obtained vectors are
termed eigen vector space models. It has been shown experimentally in [133] that
clustering with EVSM and cosine distance metric consistently yielded higher cluster
purity and lower Rand Index than the GLR-based method. In a later work, EVSM
was also used in El-Khoury et al. [38] for cluster modeling in their hierarchical
bottom-up clustering system.

8.5.2 Distance Measures

Many speaker diarization systems employ some kinds of distance metrics in one
way or the other. In agglomerative systems, they are used to decide which clusters
to merge and when to stop the clustering process. While in speaker segmentation,
distance metrics are often used in conjunction with sliding windows to detect the
speaker change points. On the other hand, these metrics also find some applications
in cluster refinement and purification.

Many distance measures were proposed in the past and they can be broadly
classified into two categories: (1) template-based, and (2) likelihood-based. The first
kind compares the parameters of the models which are applied to the data. These
are generally very fast to compute and often used as initial estimation or in real-time
systems. The representatives of this kind are: Symmetric Kullback-Leibler distance
(KL2) [121], Divergence Shape Distance (DSD) [24] and Arithmetic Harmonic
Sphericity (AHS) [21]. The second group of distances require the evaluation of
the fitness (likelihood) of the data given the representing models. These distances
are slower to compute since the likelihood-score need to be evaluated for each
data point, however their performance is better than those in the first category. In
this chapter, the metrics in the second group are referred to as likelihood-based
techniques, which are also the main focus of this section. Among them, the more
popular distances are: the Generalized Likelihood Ratio (GLR) [151], the Bayesian
Information Criterion (BIC) [29], the Cross Likelihood Ratio (CLR) [107] and the
Normalized Cross Likelihood Ratio (NCLR) [77].

Let us consider two audio segments .i; j / with feature vectors Xi D˚
xi

1; xi
2; : : : ; xi

Ni


and Xj D

n
xj

1 ; xj
2 ; : : : ; xj

Nj

o
respectively. For brevity, from now

on we refer to the audio segments as Xi and Xj . It is desirable that a proper distance
metric would have a smaller value if these two segments belong to the same speaker
and have a larger value if these two segments belong to different speakers.



8 Speaker Diarization: An Emerging Research 247

8.5.2.1 Symmetric Kullback-Leibler Distance

Kullback-Leibler (KL) divergence between two random variables A and B is
an information theoretic approach to measure the expected number of extra bits
required to encode random variable A with a code that was designed for optimal
encoding of B [30].

KL.AjjB/ D
Z 1

�1
pA.x/ log

pA.x/

pB.x/
dx (8.23)

where pA and pB denote the pdf of A and B . Symmetric Kullback-Leibler (KL2) is
simply a symmetric version of KL and is defined as:

KL2.A; B/ D KL.AjjB/ C KL.BjjA/ (8.24)

When both A and B have Gaussian distributions, a closed form solution could be
derived [24]:

KL2.A; B/ D 1

2
tr
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�
†�1

B � †�1
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�

C 1

2
tr
n�

†�1
A C †�1
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�
.�A � �B/ .�A � �B/T

o
(8.25)

where †A, †B , �A, �A are respectively the covariance matrices and means of pA

and pB , and trf:g denotes the trace of the matrix.
Given any two audio segments Xi and Xj , they can be considered as random

variables A and B and therefore the distance can be computed using the above
formula.

KL2 is used in the work by Siegler et al. [121] to compute the distance between
two sliding windows for speaker change point detection. It is also employed
as cluster distance metric in several agglomerative speaker clustering systems
[121, 160]. For their system, the authors [121] show that KL2 distance works better
than the Mahalanobis distance.

When using KL2 as a distance metric for speaker clustering, the speaker models
are often assumed to be Gaussian distributed since there is closed-form expression
to compute KL2. This assumption may make the speaker models too simple to be
able to capture the characteristics of individual speakers. There are some works
in this direction to adapt KL2 metric to more complex models. In Ben et al. [20], a
novel distance between GMMs was derived from the KL2 distance for the particular
case where all the GMMs are mean adapted from a common GMM based on the
principles of Maximum A Posteriori (MAP) adaptation. The speaker diarization
results using this metric are shown to be better than BIC when the segmentation
is of high quality. However, due to the sensitivity to segmentation errors, this metric
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is not as robust as BIC in general. In Rogui et al. [113], the author proposed a
divergence measurement method between GMMs which is based on KL divergence
and allows fast computation of distance between GMMs.

8.5.2.2 Divergence Shape Distance

Observe that Eq. (8.25) comprises of two components in which one of them involves
the mean vectors. As the mean vectors are easily biased by environment conditions,
the Divergence Shape Distance (DSD) [156] is derived from the KL distance by
eliminating this part. Therefore, the corresponding expression for DSD is:

DSD.A; B/ D 1

2
tr
˚
.†A � †B/

�
†�1

B � †�1
A

�
(8.26)

Kim et al. [67] employed DSD for speaker change detection; the authors showed
that the DSD method is more accurate than the BIC approach in presence of short
segments, while both approaches are equivalent on long segments.

8.5.2.3 Arithmetic Harmonic Sphericity

The Arithmetic Harmonic Sphericity (AHS) [21] assumes the distributions of
random variables are Gaussian and it can be viewed as an arithmetic harmonic
sphericity test on covariance matrices of pdfs of two random variables. The AHS
is defined as:

AHS.A; B/ D log
�
tr
˚
†A†�1

B

 � tr
˚
†B†�1

A

 � � 2 log.d/ (8.27)

where d is the dimension of the feature vector.

8.5.2.4 Generalized Likelihood Ratio

Given two audio segments Xi and Xj , let us consider the following hypothesis
test:

• H0: both segments are generated by the same speaker.
• H1: each segment is from a different speaker.

The feature vectors of each speaker K are assumed to be distributed according to
the generating probability density function gK .

• Under hypothesis H0: Xi [ Xj � gXi Xj .
• Under hypothesis H1: Xi � gXi and Xj � gXj
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Since the generating density functions gXi , gXj , and gXi Xj are unknown, these
functions are therefore required to be estimated from the observed data by means of
maximum likelihood (ML) optimization. Denote fXi , fXj , and fXi Xj respectively
the ML estimated models of the generating densities gXi , gXj , and gXi Xj . The
Generalized Likelihood Ratio (GLR) between two hypotheses is then defined by:

R D L
�
Xi [ Xj jfXi Xj

�
L .Xi jfXi /L

�
Xj jfXj

� (8.28)

with L .XjfX/ being the likelihood of the data X given the probability density
function fX . The feature vectors are assumed to be independently and identically
distributed (i.i.d.), thus:

R D

NiQ
kD1

fXi Xj

�
xi

kj‚fXi Xj

	 NjQ
kD1

fXi Xj

�
xj

k j‚fXi Xj

	

NiQ
kD1

fXi

�
xi

kj‚fXi

� NjQ
kD1

fXj

�
xj

k j‚fXj
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being ‚fXi
, ‚fXj

, and ‚fXi Xj
the parameter sets of the pdfs fXi , fXj , and fXi Xj

correspondingly. The distance dGLR is the negative logarithm of the previous
expression:

dGLR D � log R (8.30)

In Bonastre et al. [22], the GLR is used to segment the signal into speaker turns.
In Adami et al. [5], an algorithm is specifically designed for two-speaker segmen-
tation with GLR as distance metric. Another system for two-speaker segmentation
is proposed by Gangadharaiah et al. [49], with GLR metric in the first segmentation
step.

8.5.2.5 Bayesian Information Criterion

Bayesian Information Criterion (BIC) is a Bayesian approach to the model selection
problem which is proposed by Schwarz [116]. The BIC value for a model M is
defined as:

BICM D logL .XjM / � �
#.M /

2
log N (8.31)

where L .XjM / denotes the likelihood of data X given model M , #.M / denotes
the number of free parameters in M and N denotes the number of observations in
X , � is a tunable parameter dependent on the data. BIC is an approximation to the
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posterior distribution on model classes. It is shown in [116] that maximizing BIC
value also results in maximizing the expected value of the likelihood over the set of
parameters of M . Thus, BIC is commonly used to choose the best parametric model
among the set of models with different number of parameters.

Following the same notations as in Sect. 8.5.2.4, under hypothesis H0 we have:

BICH0 D log fXi Xj

�
Xi [ Xj j‚fXi Xj

	
� �
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2
#.‚fXi Xj

/ log.Ni C Nj / (8.32)

Likewise, under hypothesis H1:
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The BIC distance metric is then defined as:

dBIC D BICH1 � BICH0 (8.34)

The above expression can be re-written in terms of dGLR as:

dBIC D dGLR � �
1
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�
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/ � #.‚fXi Xj

/
	

log.Ni C Nj / (8.35)

D dGLR � �
1

2
� log.Ni C Nj / (8.36)

where � is the difference between the number of free parameters of models in
hypothesis H1 and hypothesis H0. From (8.36), BIC distance can be considered
as a penalized GLR distance, with the penalty depending on the free parameter
�, number of parameters as well as number of observations. The selection of free
parameter � has been subject of constant study.

BIC is introduced for the case of speech and specifically for acoustic change
detection and clustering by Chen and Gopalakrishnan [29], where the problem is
formulated as that of model selection. In this paper, the authors introduced a tunable
parameter � in the penalty term which is used to improve the performance of the
system for a particular condition in practice. This parameter therefore implicitly
defines a threshold which needs to be tuned to the data and its correct setting has
been subject of constant study [34,82,94,131,139]. Ajmera [8,9] proposes a method
to cancel the penalty term by adjusting the number of free parameters in the models
accordingly. The authors use a GMM with diagonal covariance matrices for each
of the pdfs fXi , fXj and fXi Xj . By ensuring that the number of mixtures in fXi Xj

equals to the number of mixtures in fXi plus the number of mixtures in fXj , as a
result � D 0, and the penalty term is eliminated. In this case:

dBIC D dGLR (8.37)
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In Chen and Gopalakrishnan [29], it is shown that BIC value increases according
to data size. This presents in general a problem when there is a big mismatch
between clusters or windows with different data sizes. Thus, Perez-Freire [103]
introduces the penalty weight which depends on the data size in order to achieve
better robustness. Vandecatseyes [139] normalizes the BIC score by the total number
of frames and shows that it consistently outperforms non-normalized BIC.

8.5.2.6 Cross Likelihood Ratio

The Cross Likelihood Ratio (CLR) measure was first used in Reynolds et al. [107]
to compute the distance between two adapted speaker models and it was defined as:

dCLR D log
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where fUBM is pdf of the Universal Background Model (UBM); fXi , fXj are pdfs
of the adapted speaker models for speaker i and speaker j , respectively. The UBM
is trained with a huge amount of audio data according to the gender (male, female)
and the channel conditions. The speaker models are derived by adapting the UBM
parameters with speaker speech data. The adaptation method often used is the
Maximum A Posteriori (MAP) [50] adaptation. The CLR is commonly employed as
distance metric in agglomerative speaker clustering systems including Barras et al.
[19], Reynolds and Torres-Carrasquillo [110], and Sinha et al. [123].

8.5.2.7 Normalized Cross Likelihood Ratio

Normalized Cross Likelihood Ratio (NCLR) was presented as a distance measure
between two speaker models [77]. Given two speaker models fXi and fXj , the
NCLR distance is defined as:

dNCLR D 1
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8.5.2.8 Other Distance Measures

8.5.2.8.1 Gish-Distance

Gish et al. [53] proposed a distance measure, which is referred to as Gish-distance
in the literature. This distance is based on likelihood ratio with the assumption of
multivariate Gaussian models and was used as clustering metric in [53] and [65].
van Leeuwen [78] employed Gish distance for agglomerative clustering in the TNO
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speaker diarization system. Jin et al. [61] performed agglomerative clustering with
Gish-distance and scaling heuristic to favor merging of consecutive segments.

8.5.2.8.2 Vector Quantization Distortion

In Mori and Nakagawa [94], the experimental results demonstrated superior perfor-
mance of vector quantization (VQ) metric in both speaker segmentation and speaker
clustering comparing to GLR and BIC. However, the database is too small (only 175
utterances) and restrictive (only clean speech) to deduce any conclusions.

8.5.2.8.3 XBIC

In Anguera [14], a XBIC metric, which is based on cross-likelihood between each
data segment and the model trained on data from the other segment, is introduced for
speaker segmentation and is shown to behave similar or better to BIC with reduction
in computation.

8.5.2.8.4 Probabilistic Pattern Matching

Malegaonkar et al. [86] employed a probabilistic pattern matching approach for
detecting speaker changes and studied different likelihood normalization techniques
to improve the robustness of the proposed metric, and as a result better speaker
segmentation was achieved comparing to BIC.

8.5.3 Speaker Segmentation

Speaker segmentation, with the aim to split the audio stream into speaker homoge-
nous segments, is a fundamental process to any speaker diarization systems. While
many state-of-the-art systems tackle the problem of segmentation and clustering
iteratively, traditional systems usually perform speaker segmentation or acoustic
change point detection independently and prior to the clustering stage. Various
segmentation algorithms have been investigated in previous works, which can be
categorized in one of the following groups: (1) silence detection based methods,
(2) metric-based segmentation, and (3) hybrid segmentation.

8.5.3.1 Silence Detection Based Methods

Some of the speaker segmentation techniques are based on silence detection in
speech signal. In these methods, it is supposed that there exists a silence region at
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change points between speaker turns. The silence was detected either by a decoder
[81] or directly by measuring and thresholding the audio energy [65, 98]. The
segments are then generated by cutting the input at silence locations. However, the
accuracy of such naive techniques is poor [65]. Moreover, the correlation between
the existence of a silence in a recording and a change of speaker is arbitrary at most.
Therefore, such techniques are usually used to detect hypothetical change points,
which are then confirmed by more advanced techniques in the later stage.

8.5.3.2 Metric-Based Segmentation

The favored approach to speaker segmentation is to observe adjacent windows of
data and calculating a distance metric between the two, then deciding whether the
windows originated from the same or different speakers. The decisions generally
base on a threshold/penalty term and this threshold is set empirically by using an
additional development data. Various metric-based segmentation algorithms have
been proposed in the literature, the differences among them lie mainly in the choice
of distance metrics, the size of two windows, the time increment of the shifting of
the two windows, and the threshold decisions.

8.5.3.2.1 Fixed-Size Sliding Window

In the pioneered work by Siegler et al. [121], the authors represented each window
as a Gaussian and calculated the distance between the two distributions using the
symmetric KL2 distance. To accomplish this, means and variances were estimated
for a 2 s window placed at every point in the audio stream. When the KL2 distance
between bordering windows reaches a local maximum, a new segment boundary is
generated. The same framework was applied in Bonastre et al. [22] with the GLR as
the distance metric and a tuned threshold to avoid missed detection to the detriment
of false alarms. In Adami et al. [5], an initial speaker model was estimated from
the small segment at the beginning of the conversation and the segment that has
the largest GLR distance from the initial segment was used to train second speaker
model. The segment boundaries are defined at the points where the GLR distances
with respect to both speakers are equal; each segment in the conversation is assigned
to the speaker with the smallest distance. Kim et al. [67] used DSD for speaker
change detection with the covariances estimated for two sliding windows of 3 and
2.5 s overlapping. They showed that the DSD metric is more accurate than the BIC
approach in presence of short segments, while both approaches are equivalent on
long segments. In a more recent work, inspired by speaker verification techniques,
a probabilistic pattern matching method with several likelihood normalization
methods were investigated for speaker segmentation task in [86]. The proposed
bi-lateral scoring scheme was shown to be more effective than BIC and XBIC,
mainly due to the inclusion of score normalization techniques.
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8.5.3.2.2 Variable-Size Sliding Window

Later, Chen and Gopalakrishman [29] formulated the problem of speaker change
detection as a model selection problem and applied BIC for this purpose. This
technique looks for potential change points in a window of frames by testing two
hypotheses: the first hypothesis assumes the data in the window belong to one
speaker and therefore is better represented by that speaker distribution, on the other
hand the second hypothesis assumes that there are two different speakers, hence the
data are better modelled by two different distributions. In case there is no change
point detected within the window, its size is increased by a certain number of frames
depending on the algorithm and the process is repeated. Tritschler and Gopinath
[131] suggested another variable window scheme in which the size of the window
is increased adaptively in contrast to a fixed amount as in Chen and Gopalakrishnan
[29]. They also devised some rules to eliminate some of the BIC tests in the
window, when they correspond to locations where the detection of a boundary is
very unlikely. These heuristics make the algorithm faster and give importance to
detecting short changes. In Sivakumaran et al. [124] and Cettolo and Vescovi [28],
by significantly reducing the number of operations involved in the estimation of the
means and covariance matrices, the segmentation process were sped up. In Roch and
Cheng [111], a MAP-adapted version of the models was presented, which allows for
shorter change points to be found at the cost of being slightly worse than EM-trained
models when longer hypothesis windows are used. A notable variation to BIC has
been proposed by Ajmera and Wooters in [8], in which the authors fixed the number
of parameters between the two BIC hypotheses so as to eliminate the need for tuning
the BIC penalty term.

8.5.3.2.3 Multi-Step Segmentation

There are also works which attempt to make the detection procedure faster by
applying a distance measure prior to BIC. DIST-BIC [33, 34] is a work in this
direction. A log-likelihood ratio (LLR) based distance computation prior to BIC was
proposed in this work, which is faster than BIC. Then, only selected change points
are passed through the BIC test. In Zochova et al. [163], the same framework was
used with some modifications in speaker change candidate detection and speaker
change position location. They reported better results in a majority of tests. Also in
this direction, Zhou and Hansen [160] proposed applying T2-statistics prior to BIC.
The authors claimed to improve the algorithm speed by an order of 100 compared
to Chen and Gopalakrishnan [29] without sacrifice the overall performance. Lu and
Zhang [83] applied KL2 distance on line spectrum pair (LSP) frequency features;
the speaker change detection scheme was able to meet the requirement of real-time
processing in multimedia applications. Vandecatseye [139] used a measure called
normalized log likelihood ratio (NLLR) to generate potential change points in the
first stage and then used normalized BIC in second stage to eliminate false alarm
turns. All of these algorithms perform in a bottom-up manner where there are many
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short speaker turns in the first step which will be eliminated subsequently in the
second step. However, Wang [149] proposed a method which perform in top-down
manner. A long sliding window was first used to segment a long audio stream into
shorter sub-segments, and sequential divide and conquer segmentation was applied
to each sub-segment with shorter window to detect the remaining change points.
Both stages used BIC as the distance metric. In Gangadharaiah et al. [49], a two-
speaker segmentation algorithm was performed in two steps. In the first step, a
standard approach for segmentation was applied using GLR with same size adjacent
windows, fixed step shifting. In the second step, several segments were selected to
train a GMM for each speaker and the rest were assigned to either speaker with a
maximum likelihood (ML) approach.

8.5.3.3 Hybrid Segmentation

Liu and Kubala [81] introduced a two-stage hybrid segmentation system combining
model-based and metric-based approach. The output of a phone-based decoder was
used as the initial segments and a new penalized GLR criterion was employed to
accept/reject change-points previously found. Kemp at al. [65] chopped the input
signal into short segments of 1 s, then performed bottom-up clustering using Gish
distance until a predetermined number of clusters remained. GMMs were trained
for each cluster and a model-based segmenter was then applied.

8.5.3.4 Segmentation Evaluation

In evaluating segmentation performance, two kinds of error measures are commonly
computed, false alarm rate (FAR) and miss detection rate (MDR):

FAR D Number of false alarms
Number of detected change points (8.40)

MDR D Number of miss detections
Number of actual change points (8.41)

where a false alarm refers to a change point is detected but it does not exist, a miss
detection refers to an existing change point but is not detected by the algorithm.
On the other hand, one may use the recall (RCL) and precision (PRC) defined as:

RCL D 1 � FAR (8.42)

PRC D 1 � MDR (8.43)

In order to consider the trade-off between these two metrics, the F measure can
be used:

F D 2 � PRC � RCL

PRC C RCL
(8.44)
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8.5.4 Speaker Clustering

8.5.4.1 Agglomerative Hierarchical Clustering

Most state-of-the-art speaker diarization systems employ agglomerative hierarchi-
cal clustering (AHC) architecture, also known as bottom-up clustering, where the
systems start with an overdetermined number of segments/clusters and via merging
procedures to converge to the optimum number of clusters determined by some
stopping criteria.

8.5.4.1.1 Step-By-Step Speaker Segmentation and Clustering

This is the classical approach where change point detection is typically used to
segment the recording into speaker homogeneous segments and then these segments
are grouped together according to a distance measure until a stopping criterion is
satisfied.

The work of Jin et al. [61] was probably one of the earliest research done
in speaker clustering with intention for speaker adaptation in automatic speech
recognition (ASR) systems. After segmentation, the system built a distance matrix
using Gish-distance based on the Gaussian models of the acoustic segments and
hierarchical clustering was performed on this distance matrix, in which the distance
between consecutive segments was scaled by a factor to increase the probability
of merging these segments. As stopping criterion, the optimal clustering was
selected by minimizing the within-cluster dispersion with some penalty against
too many clusters. However, no systematic way to deduce the optimal value of
the penalty term was proposed in this work. With the same purpose of speaker
adaptation, in Siegler et al. [121], the KL2 distance was used as a distance metric.
The authors showed that the KL2 distance works better than the Mahalanobis
distance for speaker clustering. In this work, the stopping criterion was determined
with a merging threshold, which was presumably tuned on development data set
however no training procedure was specified. Solomonoff et al. [125] used the
GLR distance matrix for speaker clustering. The authors proposed a cluster purity
metric to evaluate the quality of a partition, which can also be used to determine
the appropriate number of clusters. However, this metric requires knowing the true
speaker of each segments, thus a method to estimate cluster purity without true
labels was also presented in the paper. The estimation method involved a tunable
parameter, but the authors did not clearly indicate how to obtain this parameter
value. In Tsai et al. [134], they also used the same metric to determine number
of speakers, however with an entirely different inter-cluster distance measurement.
Instead of training models for each speaker clusters as classical measurement,
they projected the segments/clusters into a speaker reference space, in which the
distances between segments/clusters are claimed to be more effective and reliable.
Although fairly good performance has been obtained, they also raised concern
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about the correlation between speaker reference bases, which ideally should be
statistically independent with each other. Jin et al. [62] also used GLR metric in
their work with the modification in speaker models. Instead of training each speaker
model independently, they constructed a UBM from all the speech segments of that
recording then used MAP adaptation for each individual speaker.

Chen and Gopalakrishnan [29] introduced BIC metric for speaker segmentation
and clustering. In this work, starting from each individual segment as a cluster,
hierarchical clustering was performed by calculating the BIC measure for every
pair of clusters and merging the two clusters with the highest BIC measure.
The clustering is stopped when no two clusters resulted into an increase in BIC
measure, when merged. Zhou and Hansen [160] proposed a multi-step segmentation
approach using T 2-statistic to select potential change points and validate with BIC
to speed up the segmentation procedure. Then a GMM classifier was employed to
automatically label the segments as male or female speech, and bottom-up clustering
was performed on the segments of each gender independently, with BIC as distance
metric and stopping criterion. It was shown that with gender labeling, the resulting
clusters have higher purity in comparison with no gender labeling. This algorithm
has been applied for audio indexing tasks in [55]. In Cassidy [27], Mahalanobis
was used as cluster distance metric to merge all segments longer than 1:5 s and
BIC was used as stopping criterion. Once speaker clustering has been performed,
a Gaussian model was then trained on each cluster and these models were used to
classify all speech segments. The similar framework was employed in van Leeuwen
[78] with BIC for speaker segmentation, stopping criterion and Gish distance for
agglomerative clustering. Zhu et al. [161] applied Viterbi re-segmentation after
the initial segmentation with Gaussian divergence measure. Then, a two-stage
clustering method was performed, with BIC agglomerative clustering preceding
a speaker identification module. The boundaries of speech segments are kept
unaltered during the clustering process.

In some later works, the additional re-segmentation step was implemented after
the clustering procedure, to refine the segment boundaries. In [19], the authors used
BIC as both the distance metric and stopping criterion with the addition module of
speaker identification (SID) clustering. The system first classified each cluster for
gender and bandwidth and used MAP adaptation to derive speaker models from
each cluster. In SID clustering process, agglomerative clustering was performed
separately for each gender and band condition, the speaker models were compared
using a metric between clusters named cross likelihood distance [107]. It was shown
that with the addition of SID clustering, the diarization error rate could be reduced
nearly 50 % relatively. In Kim et al. [67], a multi-stage approach was proposed
which includes: speaker segmentation using DSD metric, initial clustering with
BIC as distance metric, clustering by HMM models likelihood scores, and finally
HMM-based re-segmentation. The combined method was shown to outperform any
individual approach. The LIUM speaker diarization system [60] was also based
upon a standard framework composed of three modules: signal split into small
homogeneous segments with GLR metric, speaker clustering without changing the
boundaries with BIC metric, and boundaries adjustment with Viterbi decoding.
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Other than HMM and Viterbi, Reynolds and Torres-Carrasquillo [110] employed
the iterative re-segmentation using GMM for frame-based classification with a
smoothed window of 100 frames. Moreover, they also included non-speech models
in the re-segmentation step.

8.5.4.1.2 Iterative Speaker Segmentation and Clustering

Typically, in this framework, initial clusters are obtained by some initialization
procedures. Models are then trained on these clusters and Viterbi decoding is
performed to identify when the speaker changes occur as well as the hypothesized
speaker identity of each segment. The procedure is repeated: the latest segmentation
is used to train the hypothesized speaker models, then Viterbi decoding is run to
perform speaker segmentation and speaker clustering. Figure 8.4 shows the typical
structure of the state-of-the-art single channel speaker diarization systems using
iterative agglomerative hierarchical clustering approach.

In Gauvain et al. [51], the authors proposed an iterative GMM clustering
method which uses an objective function based on penalized log-likelihood. For
each iteration, all possible pairs of segments are considered for merging and its
corresponding likelihood loss is calculated. Eventually, the pair with the smallest
loss is merged and the GMM statistics were reevaluated. The process is reiterated
until the likelihood loss crosses a specified threshold, then the data is segmented
using a Viterbi decoder with the newly estimated GMMs. The whole process is
repeated until the segmentation converges or a maximum number of iterations are
reached. Two parameters are introduced in this function to penalize number of
segments and number of clusters. The function therefore could be used both to
determine which clusters should be merged and to determine when to stop merging.
However, the selection of parameters is too ad-hoc and there are two parameters
to tune, this method is coupled with robustness issue. Sinha et al. [123] also used
a similar iterative agglomerative hierarchical clustering (IAHC) scheme with the
addition of speaker identification (SID) clustering after IAC. In the SID clustering
phase, CLR metric is employed to select the closest pair of clusters to be merged
and a threshold is defined to stop the merging process.

The paper by Ajmera and Wooters [9] was probably the first to suggest
an iterative, agglomerative clustering technique based on a HMM framework.
A uniformly initial segmentation is used to train speaker models that iteratively
decode and retrain on the acoustic data. Pairs of closest clusters are merged in
successive iterations and merging stops automatically using a threshold-free BIC
metric. Later, in the ICSI-SRI fall 2004 diarization system, Wooters et al. [152] used
the same framework with the introduction of Viterbi segmentation likelihood scores
as stopping criterion. The Viterbi stopping criterion was reported to be slightly better
than BIC which is contributed by the reduction in speaker error rate. In Anguera
et al. [18], they improved this framework with an addition of purification algorithm
to split clusters that are not acoustically homogeneous.



8 Speaker Diarization: An Emerging Research 259

Fig. 8.4 Typical structure of the state-of-the-art single channel speaker diarization systems
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8.5.4.1.3 Information Bottleneck

Agglomerative Information Bottleneck (aIB) is another bottom-up algorithm used
to perform speaker diarization. The goal of the aIB system is to iteratively merge
uniform short segments S D s1; s2; : : : ; sN into clusters C D C1; C2; : : : ; CK which
simultaneously maximize the mutual information I.Y; C / of a set of relevance
variables Y and a set of clusters C , while minimizing the mutual information
I.C; X/ of C and a set of segments S , as shown in Eq. (8.45). The merging
continues until the stopping criterion is met. After which, Viterbi decoding is
performed in order to determine the segment boundaries.

max

�
I.Y; C / � 1

ˇ
I.C; X/

�
(8.45)

where Y is a set of components of a background GMM trained on the entire
audio recording, and ˇ is a Lagrange multiplier. Thus, Eq. (8.45) is used to
determine a cluster representation C which is useful for describing the relevance
variables Y (maximize I.Y; C /) and simple (minimize I.C; X/). The aIB is
more computationally efficient than the HMM-GMM speaker diarization system
since new models are not trained for each potential merging of two clusters.
Instead, for the aIB framework subsequent statistics are taken to be averages of
previously defined statistics. Speaker diarization systems which employed aIB are
predominantly implemented by Vijayasenan et al. [140–145].

8.5.4.1.4 Multi-Stream Clustering

With the available of multi-channel recordings, the time delays between microphone
pairs can be computed. In [39], Ellis and Liu employed spectral subspace approach
to cluster the delay feature vectors into different groups where each group represents
individual speaker. However, the system missed many speaker turns which incurred
miss detection errors and resulted in high overall error rate. In Pardo et al. [99], the
same clustering framework as in Ajmera and Wooters [9] was used with time delay
feature in place of acoustic feature. The system was compared to that of [39] and
significant improvement was reported. However if comparing these results with the
results obtained from the same systems using standard acoustic feature, there is still
a big gap to cover. Luque et al. [84] analyzed the TDOA distribution of a recording
and exploited the most likely and stable pairs of TDOA to obtain an initial clustering
of speakers. An iterative agglomerative clustering algorithm similar to [9] was
then performed with MFCC as features. The authors reported better performance
comparing to uniform initialization of clusters. In Anguera [16], the inter-delay
features and acoustic features were cleverly combined in a multi-stream HMM
framework and the performance is greatly improved. In this framework, each feature
stream is assigned a weight which reflects the relative contribution of individual
feature stream; the weights were learned from development data. Later in [17],
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the same authors proposed an automatic weighting for the combination of these
two feature streams. The scheme was later used in ICSI RT07s Speaker Diarization
System [153] and this is the state-of-the-art system thus far. Following the same
clustering framework, the AMIDA speaker diarization system [79], in contrast
to uniform initialization, started with typically 40 initial clusters by performing
segmentation and clustering using BIC. The system employed CLR as clustering
distance measure using both cepstral and delay features. The weight of each feature
stream was fixed, with higher contribution given to acoustic features.

Apart from time delay features, other features may also be combined with con-
ventional spectral features in multi-stream speaker diarization system. Vinyals and
Friedland [147] proposed the use of modulation spectrogram [68] as an additional
stream of features to the commonly used MFCCs. In this work, the clustering
framework follows the ICSI agglomerative clustering approach [9, 18, 153] with
fixed weighting for each feature stream. In [46, 48], the authors investigated a large
set of 70 prosodic and long-term features and applied Fisher criterion to rank these
features by their ability to discriminate speakers. It is shown in the paper that the
combination of MFCC features with the additional top-ten ranked prosodic and
long-term features leads to improvement in terms of diarization error rate.

8.5.4.2 Divisive Hierarchical Clustering

Divisive hierarchical clustering, also known as top-down clustering, starts with very
few clusters and proceed to split the clusters iteratively until the desired number of
clusters is reached. In the current literature there are few systems following this
clustering framework.

A top-down split-and-merge speaker clustering frame work was proposed in
Johnson and Woodland [64] to enhance the accuracy of ASR in broadcast news
by improving the unsupervised speaker adaption. The clustering algorithm starts
with one node consisting of the whole speech recording. At each stage, a node
is considered to be split into four child nodes if some segments belong to that
node might move to other nodes using the maximum likelihood (ML) criterion.
The splitting is continued until the algorithm converges or the maximum number
of iterations is reached. At each stage of splitting, clusters that are very similar to
each other are allowed to merge. Two different implementations of the algorithm
were proposed: one was based on direct maximization of MLLR and one was based
on AHS metric. In Johnson [63], the similar framework with AHS distance metric
was applied for speaker diarization with the same stopping criterion as proposed in
Solomonoff et al. [125].

In Meigner et al. [89], an iterative approach combining both segmentation and
clustering in a top-down manner named evolutive HMM (e-HMM) was proposed.
Initially, the system starts with one HMM trained on all the acoustic data available.
The best subset features of this model (in terms of maximum likelihood scores)
are taken out to train a new model using MAP adaptation. According to the
subset selected, a segmentation is performed using Viterbi decoding. This process
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is repeated until the gain in likelihood score is insignificant, which is controlled
with a tunable parameter. This parameter significantly influences the segmentation
error as reported in the paper. In Anguera and Hernando [13] a similar approach
was followed and a repository model was further introduced, which showed an
improvement of 20 % relatively.

8.5.4.3 Other Approaches

8.5.4.3.1 Self Organizing Map

In [72], Lapidot presented an approach for speaker clustering based on Self
Organizing Map (SOM) given a known number of speakers. In this approach, SOM
is used as likelihood estimators for speaker model and BIC is applied for estimation
of the number of clusters.

8.5.4.3.2 Genetic Algorithm

In Tsai and Wang [132], they formulated the problem of speaker clustering as that
of maximizing the overall within-cluster homogeneity. The within-cluster homo-
geneity is defined as the likelihood probability that a cluster model, trained using
all the utterances within a cluster, matches each of the within-cluster utterances.
This probability is maximize using genetic algorithm with initial random cluster
assignment and iterative evaluation of the likelihood and mutation. In order to select
the optimum amount of clusters they used BIC computed on the resulting models.

8.5.4.3.3 Variational Bayesian

In [136, 137], Valente and Wellekens explored the use of Variational Bayesian
(VB) learning, which has the capacity of model parameter learning and model
complexity selection at the same time, for speaker clustering. With the proposed
VB approach, the initial speaker models could be modeled as GMMs with any
number of Gaussians, VB automatically prunes together with the cluster number,
the best Gaussian model at the same time, resulting in smaller models where
few observations are available and in bigger models where more observations are
available.

8.5.4.3.4 Dirichlet Process Mixture Model

In the previous works, the model learning methods (EM, ML, MAP) require the
model space (such as number of mixtures, components, states etc.) is known a priori.
Recently, Valente [135] proposed the use of infinite models for speaker clustering,
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in which the segmentation is obtained through a Dirichlet Process Mixture Model
(DPMM). DPMM is a flexible model of unknown complexity with a prior on
the parameters follow Dirichlet Process [40] which avoids fixing the number of
observation modes. The experiments on broadcast news data showed improvements
over ML/BIC, MAP/BIC and VB. In [44], Fox et al. extended the original work
on hierarchical Dirichlet process hidden Markov model (HDP-HMM) [129] and
apply this framework for speaker diarization on the NIST meeting database. The
reported result was comparable to that of the state-of-the-art system [153], which
use agglomerative BIC clustering, in NIST Rich Transcription Evaluations 2007.

8.5.4.4 Multiple Systems Combination

The speaker diarization systems presented thus far use either top-down or bottom-up
technique for clustering. There are some works on algorithms to combine multiple
systems and obtain an improved speaker diarization. In Tranter [130], the author
presented a cluster-voting scheme designed to reduce the diarization error rate
by combining information from two different diarization systems. Improvements
were shown on broadcast news database when combining two bottom-up systems
and two top-down systems. In Moraru et al. [92, 93], two strategies for systems
combination were presented, those are: hybridization strategy, and merging strategy.
The hybridization strategy consists of using segmentation results of the bottom-up
system to initialize the top-down system. This solution associates the advantages
of longer and quite pure segments of the agglomerative hierarchical approach with
the HMM modeling and decoding power of the integrated approach. The merging
strategy proposes a matching of common resulting segments followed by a re-
segmentation of the data to assign the non-common segments.

8.5.5 Online Speaker Clustering

Online speaker diarization systems, though sharing many similarities with their
offline counterparts, have some distinctive components which are considered to
be more important for online learning, these include: (1) novelty detection where
new speakers are detected, and (2) incremental learning where speaker models
are updated adaptively with new observations. Given the major considerations for
real-time systems is the latency, some techniques discussed in this section are the
scaled-down versions of the offline techniques, while others are specifically devised
for real-time processing. The majority of online speaker diarization systems adopted
the conventional leader-follower clustering method [36], its structure is depicted in
Fig. 8.5.

Segmentation. Standard model-based speech activity detection approach was
taken in Markov and Nakamura [87,88] to obtain speech segments, where the frame
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Fig. 8.5 Sequential
clustering architecture with
leader-follower clustering
method

classification labels were smoothed with two median filters and duration constraints
were applied to decide the start and end points of these segments. However, a key
parameter named decision time (DT), which is essentially the latency time, was
responsible to make decisions, e.g. the system outputs the decisions at DT time
after the speech data are available, regardless the length of the speech segment. On
the other hand, a simple energy-based SAD with duration constraint was employed
in [52] to label initial speech segments. These segments were then confirmed or
rejected by a model-based detector with gender identification and the system made
decisions every times when the segment end points are detected.

Novelty Detection. This component is responsible for detecting unseen speakers
which are not in the current repository and is considered to be essential for online
speaker diarization system. To this end, the authors of [52] applied an open-set
speaker identification technique where each short segment is verified against all
existing speaker models using likelihood ratio scoring. If none of the models is
matched, a new speaker model is created by adapting the corresponding gender
dependent UBM to this speaker data, otherwise the existing model is updated with
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the newly available observations. In [80], the GLR metric was used to measure
the distance between the new speech segment and all models in the repository.
The pair with minimum distance was then selected and compared to a pre-defined
threshold to confirm whether the segment belongs to this speaker. If it does not,
a Gaussian model is estimated from the speech segment and new speaker model is
added to the current database. Also based on likelihood ratio, Markov and Nakamura
[87] performed a hypothesis test with two hypotheses: H0 if the new segment
belongs to an old speaker, and H1 if it belongs to an unseen speaker. Three different
approaches to compute the likelihood corresponding to hypothesis H0 was presented
in the paper. In their later work [88], inspired by speaker verification research,
score normalization techniques were suggested to improve the robustness of novelty
detection in terms of speaker genders and number of speakers in the database. In a
rather different approach, Koshinaka et al. [70] employed BIC for model selection
together with an ergodic HMM for this purpose.

Speaker Modeling. Various speaker modeling techniques have been discussed in
Sect. 8.5.1, where GMM was widely adopted in many systems. However, traditional
EM algorithm to estimate the parameters of GMM is relatively computational
expensive for online system. To learn the speaker model rapidly and from limited
available data, Geiger et al. [52] trained gender dependent UBMs and take advantage
of MAP adaptation to quickly adapt the corresponding UBM with the speaker data.
Alternatively, incremental versions of EM were proposed in [95] and some online
variants followed later [115, 157], the techniques were then applied in Markov and
Nakamura [87, 88] to estimate the speaker models. On the other hand, Koshinaka
et al. [70] modeled each speaker as a state of an ergodic HMM, each state is a
GMM. The model parameters are updated online with variational Bayesian learning
algorithm.

8.5.5.1 Speaker Clustering Evaluation

Consider Ns speakers that are clustered into Nc groups, where nij is the number of
frames in cluster i spoken by speaker j , nci is the number of frames in cluster i , nsj

is the number of frames spoken by speaker j , and N is the total number of frames.

8.5.5.1.1 Average Cluster Purity

The average cluster purity (acp) [7] gives a measure of how well a cluster is limited
to only one speaker; it reduces when a cluster includes segments from two or more
speakers. The acp is based on cluster purity which is defined as:

pci D
NsX

j D1

n2
ij

n2
ci

(8.46)
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where pci is the purity of cluster i . Then the acp is computed as:

acp D 1

N

NcX
iD1

pci nci (8.47)

8.5.5.1.2 Average Speaker Purity

On the other hand, the average speaker purity (asp) [7] gives a measure of how well
a speaker is limited to only one cluster; it reduces when speech of a single speaker
is split to more than one cluster. The asp is based on the speaker purity:

psj D
NcX

iD1

n2
ij

n2
sj

(8.48)

where psj is the purity of speaker j . The asp is computed as:

asp D 1

N

NsX
j D1

psj nsj (8.49)

8.5.5.1.3 K Measure

To balance the trade off between acp and asp, as well as to facilitate comparison
between systems, Ajmera [7] propose the K measure, which is a geometrical mean
of acp and asp:

K D p
acp � asps (8.50)

8.5.5.1.4 Rand Index

The Rand index [106] is a widely used measure for comparing partitions. It gives
the probability that two randomly selected frames are from the same speaker but
grouped in different clusters, or the two frames are in the same cluster but from
different speakers. Rand index is defined as:
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Rand index value changes from 0 to 1. The lower the index, the higher the agreement
is between two partitions. However, it does not provide any information on how the
partitions are distributed and how the two partitions are related.

8.6 Speaker Diarization Evaluation

The standard performance metric of the speaker indexing and diarization systems is
the diarization error rate (DER). To evaluate the performance, an optimum mapping
from the reference speakers in the conversation to the system speakers of the system
should be found. The criterion for this mapping optimality is the percentage of
the speech parts which are common to both the reference speaker and the system
speaker. This optimality metric is calculated for all segments and all speakers. The
mapping should map each reference speaker to at most one system speaker and vice
versa. Once the optimal mapping is found, the DER is then evaluated as a time-
based score which calculates the percentage of speaker time which is not mapped
correctly to a reference speaker.

DER D
P

s dur.s/:
�
max

�
Nref.s/; Nsys.s/

� � Ncorrect.s/
�

P
s dur.s/:Nref.s/

(8.52)

where s is the longest continuous segments for which the reference and system
speakers do not change, dur.s/ is the duration of s, Nref.s/ is the number of reference
speakers in s, Nsystem.s/ is the number of system speakers in s and Ncorrect.s/ is the
number of mapped reference speakers which match the system speakers.

8.7 Databases for Speaker Diarization in Meeting

In this section, we list some of the available databases for meeting recordings in
which the speaker segments are accurately transcribed to serve the need for speaker
diarization task:

• The ISL Meeting Corpus [1]: 104 meetings with a total of 103 h. Each meeting
lasts an average of 60 min, with an average of 6.4 participants.

• The ICSI Meeting Corpus [2]: 75 meetings collected during the years 2000–
2002. The recordings range in length from 17 to 103 min, but generally about
1 h each. There are a total of 53 unique speakers in the corpus. Meetings involve
from 3 to 10 participants, averaging 6.

• NIST Meeting Pilot Corpus [3]: 19 meetings collected between 2001 and
2003. Approximately 15 h of data are recorded simultaneously from multiple
microphones and video cameras.



268 T.H. Nguyen et al.

• The AMI Meeting Corpus [4]: 100 h of meeting recordings. The meetings are
recorded in English using three different rooms with different acoustic properties,
and include mostly non-native speakers.

8.8 Related Projects in Meeting Room

The Interactive Multimodal Information Management (IM2) aims at the study of
multimodal interaction, covering a wide range of activities and applications, includ-
ing the recognition and interpretation of spoken, written and gestured languages,
computer vision, and the automatic indexation and management of multimedia
documents. One of the most important and challenging applications is Smart
Meeting Management. The overall objective of this application is the construction of
a demonstration system to enable structuring, browsing and querying of an archive
of automatically analysed meetings, which are captured from rooms equipped
with multimodal sensors including: close-talk microphones, distant microphones,
microphone arrays as well as cameras.

The Computers In the Human Interaction Loop (CHIL) aims at improving the
interactions between users and computers by making computers more usable and
receptive to the user’s needs and realizing computer services that are delivered to
people in an implicit, indirect and unobtrusive way. Several intelligent meeting
rooms with audio and video sensors are built where data is collected and research is
performed on the lecture-type meetings.

The project Augmented Multi-party Interaction (AMI) focuses on enhancing
the productivity of meetings by changes in technologies and changes in busi-
ness processes. The AMI Consortium studies the human behaviour in meetings
using advance signal processing, machine learning models and social interaction
dynamics. Within the scope of the project, Consortium members have developed
a very large database of pre-processed meeting recordings of multiple sources of
information (contained in audio, video and images captured). The actions, words
and all data (slides, white board drawings and hand written notes) associated with a
set of scripted meetings are captured using highly instrumented meeting rooms.

8.9 NIST Rich Transcription Benchmarks

With the goal of creating recognition technologies that will produce transcriptions
which are more readable by humans and more useful for machines, the National
Institute for Standards and Technology (NIST) has been organizing the Rich
Transcription evaluation series since 2002. In recent years, the attention has been
shifted toward meetings environment.
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Table 8.1 Summary of recent NIST RT evaluations

Source type Meeting type Tasks
Audio Video Lect Conf SAD SPKR STT SASTT

RT 2005 x x x x x x

RT 2006 x x x x x x

RT 2007 x x x x x

RT 2009 x x x x x x

The datasets used in the meetings evaluations are contributed by various
recording sites including CMU, ICSI, LDC, NIST, AMI, VT, EDI, IDI and TNO.
Two types of meetings are recorded: lecture (Lect) and conference (Conf). There
are several main tasks in the evaluations:

• Speech Activity Detection (SAD)
• Speaker Diarization (SPKR)
• Speech-to-text (STT)
• Speaker Attributed Speech-to-text (SASTT): which is essentially the combina-

tion of SPKR and STT tasks.

These tasks are further divided into several conditions such as: individual head
microphone (IHM), single distant microphone (SDM), multiple distant microphones
(MDM), all distant microphones (ADM) which including source localization arrays.
We summarize the recent evaluations in terms of data type and core tasks in
Table 8.1.

8.10 Summary

The chapter has given an introduction to speaker diarization system in general and
diarization in meetings in particular. The presentation focuses on off-line speaker
diarization systems with hierarchical clustering framework as these approaches
are thus far the most popular in the literature. With recent advances in speaker
recognition techniques, and particularly with the success of the total variability
approach, it is expected to see a shift from the current state-of-the-art IAHC
framework to a more suitable clustering framework incorporating these latest
breakthroughs. All in all, there are still many remaining challenges and issues to
be addressed, such as handling of overlap speech, improving real-time speaker
diarization systems or multi-sessions speaker diarization (speaker attribution).
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Chapter 9
Maximum A Posteriori Spectral Estimation
with Source Log-Spectral Priors
for Multichannel Speech Enhancement

Yasuaki Iwata, Tomohiro Nakatani, Takuya Yoshioka,
Masakiyo Fujimoto, and Hirofumi Saito

Abstract When speech signals are captured in real acoustical environments, the
captured signals are distorted by certain types of interference, such as ambient
noise, reverberation, and extraneous speakers’ utterances. There are two important
approaches to speech enhancement that reduce such interference in the captured
signals. One approach is based on the spatial features of the signals, such as
direction of arrival and acoustic transfer functions, and enhances speech using
multichannel audio signal processing. The other approach is based on speech
spectral models that represent the probability density function of the speech spectra,
and it enhances speech by distinguishing between speech and noise based on
the spectral models. In this chapter, we propose a new approach that integrates
the above two approaches. The proposed approach uses the spatial and spectral
features of signals in a complementary manner to achieve reliable and accurate
speech enhancement. The approach can be applied to various speech enhancement
problems, including denoising, dereverberation, and blind source separation (BSS).
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In particular, in this chapter, we focus on applying the approach to BSS. We show
experimentally that the proposed integration can improve the performance of BSS
compared with a conventional approach.

9.1 Introduction

Speech is an important medium of human-human communication, and it can
also constitute a useful human-computer interface thanks to recent advances in
automatic speech recognition (ASR) techniques. However, speech signals captured
by microphones in real acoustical environments usually contain various types
of interference, such as ambient noise, reverberation, and extraneous speakers’
utterances. Such interference may seriously degrade speech intelligibility and ASR
performance, and thus limits the application areas of speech communication and the
speech interface.

Speech enhancement is a framework that acoustically enhances the desired
speech in the captured signals by suppressing the interference, and it has been exten-
sively studied to overcome the above problems [1, 14]. Many speech enhancement
techniques have been proposed for noise reduction (denoising) [10, 15, 19, 20, 24],
reverberation suppression (dereverberation) [6, 16, 25, 27], and source separation
[4, 13, 21, 26].

Speech enhancement techniques can be categorized into two approaches based
on the features of the sounds that they use.

One approach is based on the spatial features of the individual sounds included in
the captured signal. The spatial features are composed, for example, of directions-
of-arrival (DOAs) of the sounds [13,26] and the acoustic transfer functions from the
locations of the sound sources to the microphones [4, 6, 16, 21]. In many cases, the
speech and the interference have different spatial features and can be distinguished
from each other based on these differences, thus making speech enhancement
possible. To extract the spatial features, we usually use two or more microphones
to capture the speech signals and then subject them to multichannel audio signal
processing.

The other approach is based on the spectral features of the individual sounds
included in the captured signals [5, 7, 15, 17, 20]. A spectral feature of a sound
can be represented, for example, by a power spectrum or a log-power spectrum
of the sound. The spectral features of a specific sound usually have a unique
distribution, which can be modeled by a probability density function (PDF). Such
a PDF represents the kind of spectral features that the sound tends to possess.
With this approach, a type of spectral distribution is often used, which we refer
to as a spectral prior in this chapter. A spectral prior is a distribution of spectral
features that is trained in advance using databases of a specific sound. Assuming
the spectral features of speech to have a distribution that differs from that of
the spectral features of the interference, we can achieve speech enhancement by



9 MAP Spectral Estimation with Log-Spectral Priors for Multichannel Speech. . . 283

distinguishing the speech and the interference based on their spectral features.
With an accurate speech spectral prior, this approach would be capable of reliable
speech enhancement. To model the various spectral features that the speech spectra
can exhibit in different short time frames, Gaussian Mixture Models (GMMs) and/or
Hidden Markov Models (HMMs) of the speech log-power spectra are frequently
used as the speech spectral priors [5, 15, 20].

The above two approaches have both been shown to achieve good speech
enhancement under certain recording conditions, however, they still have some
limitations under other conditions. For example, speech enhancement based on
spatial features may degrade when more than one sound source is located in the
same direction and/or when we cannot use a sufficient number of microphones to
distinguish the spatial features of the signals for the problems to be solved. On
the other hand, speech enhancement based on spectral features degrades when the
speech and the interference have similar spectral distributions, and/or when the
spectral prior does not accurately model the distribution of the speech spectra.

To overcome the above limitations, this chapter proposes a new approach that
utilizes the above two types of features in a complementary manner. The two types
of features reflect different aspects of the speech and the interference, and so even
when we have difficulty in distinguishing the speech and the interference using
one of the features, we may be able to distinguish them using the other feature.
As a consequence, the proposed approach can distinguish between speech and
interference under a wide range of recording conditions, and thus can achieve better
speech enhancement.

In presenting the proposed approach, we first refer to an existing speech
enhancement approach that is based mainly on the spatial features of the signals
[4, 10, 16]. The spectral estimation achieved by this approach is called Maximum
Likelihood Spectral Estimation (MLSE) in this chapter. With MLSE, we introduce
a probabilistic model, referred to as a likelihood function, which represents how
the captured signal is generated depending on unknown spectral and spatial features
of the speech and the interference. Then, we estimate the spectral and the spatial
features of the speech and the interference as those that maximize the likelihood
function. MLSE has been applied to a wide range of speech enhancement problems,
including denoising [10], dereverberation [16], and source separation [4], and the
effectiveness of MLSE has been confirmed for the respective problems. With MLSE,
however, we usually use rather simple models for the spectral features, and thus
speech enhancement is conducted mainly by finding spatial features that can allow
us to distinguish between speech and interference. The use of spectral priors, which
could enable us to distinguish between speech and interference, has not been well
studied for this approach.

This chapter proposes a versatile framework for introducing spectral priors into
MLSE. With the proposed approach, the speech enhancement is accomplished based
on Maximum A Posteriori Spectral Estimation (MAPSE). Compared with MLSE,
which estimates the speech spectra by maximizing the likelihood function of the
captured signal, MAPSE estimates the speech spectra by maximizing the product of
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the likelihood function and the spectral priors. As a consequence, MAPSE can take
account of the spatial and spectral features simultaneously, thereby achieving more
reliable spectral estimation.

Note that we have already employed MAPSE to extend existing speech enhance-
ment techniques, namely denoising [12] and dereverberation [11], and showed
its effectiveness in the respective applications. In this chapter, as an additional
application of MAPSE, we describe a way of applying it to blind source separation
(BSS) and show the effectiveness of the approach.

In the rest of this chapter, Sect. 9.2 first explains the way for representing and
modeling signals that is commonly used through this chapter to explain MLSE and
MAPSE. Then, after explaining the basic idea behind MLSE in Sect. 9.3, we extend
it to MAPSE in Sect. 9.4. Section 9.5 shows the way for applying MAPSE to BSS.
The effectiveness of the proposed application is presented in Sect. 9.6 by simulation
experiments. Section 9.7 provides our concluding remarks.

9.2 Signal Representation and Modeling for Multichannel
Speech Enhancement

In this section, we describe a general speech capture scenario used in this chapter
and the way for representing and modeling signals for the scenario. Hereafter, we
denote scalar, vector, and matrix variables by lower case symbols with lightface
fonts, lower case symbols with boldface fonts, and upper case symbols with boldface
fonts, respectively.

9.2.1 General Speech Capture Scenario for Multichannel
Speech Enhancement

First, we define an example speech capture scenario, which is illustrated in Fig. 9.1,
to explain the idea behind MLSE/MAPSE. In the scenario, a clean speech signal, st ,
is generated by a speaker in a room, where st is a digitized sample of the waveform
of the clean speech, and t is the index of the sample. Then, a set of acoustic transfer
functions (ATFs) first transfer st to z.m/

t for individual microphones m D 1 to M ,
respectively. In the scenario, we assume that the impulse responses corresponding
to the ATFs are relatively short, e.g., less than 100 ms.1 Next, the signal z.m/

t is
contaminated by interference, and finally captured by a set of M microphones and
denoted as captured signal x

.m/
t .

1As noted later, despite this assumption, this scenario can represent a situation with long
reverberation, and can be used for achieving dereverberation.
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Fig. 9.1 General model of speech signal capture scenario

In this chapter, we assume that the goal of speech enhancement is to reduce the
interference contaminated into the captured signal x

.m/
t , and to estimate z.m/

t for
every m. Thus, we refer to z.m/

t as a desired signal.2

The above scenario can be viewed as a general scenario that represent various
speech capture situations depending on the interpretation. We provide some exam-
ples below.

1. The scenario can represent a situation in which we capture a single speaker’s
utterance in a noisy environment if we interpret the interference in the scenario
as ambient noise [10, 12]. Then, the estimation of the desired signal corresponds
to the denoising of the captured signal.

2. The scenario can represent a situation in which we capture a single speaker’s
utterance in a reverberant environment. It is known that the reverberation can
be partitioned into the direct sound, early reflections, and late reverberation and
that the late reverberation is little correlated with the direct sound and early
reflections. Therefore, if we interpret the desired signal, z.m/

t , as being composed
of the direct sound and the early reflections, and interpret the interference as the
late reverberation [11, 16], then the estimation of the desired signal corresponds
to the dereverberation of the captured signal.

3. The scenario can represent a situation in which we capture multiple speakers’
utterances at the same time if we interpret one of the speaker’s utterance as
the desired signal and interpret the sum of the other speakers’ utterances as the
interference [4,9]. Then, the estimation of the desired signal corresponds to BSS
of the captured signal.

2If we interpret the ATFs from st to z.m/
t also as a part of the interference, we may formulate speech

enhancement that estimates st . This is beyond the scope of this chapter.
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With MLSE/MAPSE based speech enhancement, to estimate the desired signal,
we introduce probabilistic models that represents the above speech capture scenario.
The models are referred to as generative models. The speech is enhanced by
estimating the parameters of the models from the captured signals with the
maximum likelihood scheme or with the maximum a posteriori scheme. In the
following subsections, after introducing a TF domain representation of the signals
that we use for the speech enhancement, we define generative models that represent
the above general scenario.

9.2.2 Time-Frequency Domain Representation of Signals

The speech enhancement discussed in this chapter is performed in the TF domain.
So, we apply a short-time discrete Fourier transformation (STFT) to the captured
signal x

.m/
t to obtain its TF representation as

x
.m/

n;f D
F �1X
tD0

x
.m/
tCnTshift

wana
t e�j 2�

L f t ; (9.1)

where n and f are indices of time frames and frequency bins, F is the number of
the discrete Fourier transformation points, wana

t and Tshift are the analysis window
and the window shift of the STFT, respectively, and j is the imaginary unit. x

.m/

n;f for
f D 0; 1; : : : ; F � 1 takes a complex value, and it is called the complex spectrum
of the captured signal. The complex spectrum of a clean speech signal and that for
each desired signal, sn;f and z.m/

n;f , are defined in the same way.
With speech enhancement in the TF domain, an estimate of the desired signal is

obtained in the TF domain as Oz.m/

n;f by applying signal processing to the complex

spectrum of the captured signal x
.m/

n;f . Hereafter, a symbol with a hat as in Oz.m/

n;f

represents an estimated value corresponding to the symbol.
Then, we can obtain an estimate of the desired signal in the time domain, Oz.m/

t ,
by applying an inverse short time discrete Fourier transformation (ISTFT) followed
by the overlap-add synthesis as follows:

Oz.m/
n;t D 1

L

F �1X
f D0

Oz.m/

n;f ej 2�
L f t ; (9.2)

Oz.m/
t D

NX
nD1

wsyn
t�nTshift

Oz.m/
n;t�nTshift

; (9.3)

where N is the number of short time frames and wsyn
t is the synthesis window for

the overlap-add synthesis.
Hereafter, for the sake of simplicity, we refer to the complex spectrum of a signal

simply as a signal without ambiguity unless otherwise noted. For example, we refer
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to the complex spectrum of a clean speech signal as a clean speech signal. Further,
we use several different vector representations of a signal in this chapter. First,
we define three types of vectors of a signal, namely spatial, spectral, and temporal
vectors. Letting T indicate a non-conjugate transpose operation, the three types of
vectors are defined, for example for x

.m/

n;f , as

.Spatial vector/ xn;f D Œx
.1/

n;f ; x
.2/

n;f ; : : : ; x
.M/

n;f 	T ;

.Spectral vector/ x.m/
n D Œx

.m/
n;0 ; x

.m/
n;1 ; : : : ; x

.m/
n;F �1	

T ;

.Temporal vector/ x.m/

f D Œx
.m/

1;f ; x
.m/

2;f ; : : : ; x
.m/

N;f 	T ;

(9.4)

where the spatial, spectral, and temporal vectors, respectively, contain x
.m/

n;f for all
the microphones m D 1; : : : ; M , for all the frequency bins f D 0; : : : ; F � 1,
and for all time frames n D 1; : : : ; N . The symbols of the three types of vectors
are denoted by using a bold face font and by dropping one of the three indices,
m, f , or n, from the original symbol, x

.m/

n;f . We can define the three types of vectors
for all other symbols in the TF domain in a similar way. In addition, we use vector
representations that combine two or three of the above representations. For example,
by cascading spectral vectors x.m/

n over all the time frames, we can compose a
temporal-spectral vector of x

.m/

n;f for all TF points, which is defined as

.Temporal � spectral vector/ x.m/ D Œ.x.m/
nD1/

T ; .x.m/
nD2/

T ; : : : ; .x.m/
nDN /T 	T ; (9.5)

where the symbol of the temporal-spectral vector is denoted by dropping both of the
frame and frequency indices from x

.m/

n;f . On the right hand side of the above equation
we indicate the frame indices of the variables with its index type (e.g., “n D”
in “n D 1”) because otherwise the index type is ambiguous. Other combination
representations can also be defined in a similar way.

9.2.3 Generative Model of Desired Signals

For MLSE/MAPSE, we introduce a simple generative model for a clean speech
signal. Specifically, we assume that the PDF of a clean speech signal, sn;f , can be
modeled separately at each TF point by

p.sn;f jvn;f / D N .1/
c .sn;f I 0; vn;f /; (9.6)

where p.xjy/ represents a PDF of x conditioned on y, and N
.p/

c .xI �; †/ represents
a p-dimensional complex Gaussian PDF with a mean vector � and a covariance
matrix †. The above equation assumes that the clean speech signal at a TF point,
sn;f , follows a complex Gaussian PDF with a mean 0 and a variance vn;f defined as
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vn;f D Efjsn;f j2g; (9.7)

where Ef�g represents an expectation function. The above equation also means that
vn;f corresponds to the power of the clean speech signal at a TF point.

To model the nonstationarity of the clean speech signal, MLSE/MAPSE assumes
that the power of the clean speech vn;f can take any values at different TF points.
Thus, Eq. (9.6) models a PDF of a clean speech signal that can potentially take any
power pattern in the TF domain.

Here, we define the generative model of the desired signals, z.m/

n;f . We first assume
that the desired signals can be approximated by the product of the clean speech
signals and the ATFs in the TF domain as follows:

z.m/

n;f D h
.m/

f sn;f ; (9.8)

where h
.m/

f is the ATF for the m-th microphone in Fig. 9.1. Let zn;f and hf be spatial

vectors for the desired signals, z.m/

n;f , and the ATFs, h
.m/

f , for all m, respectively. Then,
Eq. (9.8) can also be written as

zn;f D hf sn;f : (9.9)

Further, letting H indicate a conjugate transpose operation, we assume that
the time-varying spatial correlation matrix of zn;f , namely Efzn;f zH

n;f g, can be
decomposed into

Efzn;f zH
n;f g D Efjsn;f j2hf hH

f g (9.10)

D Efjsn;f j2gEfhf hH
f g (9.11)

D vn;f Rf ; (9.12)

where vn;f and Rf are the time-varying and time-invariant parts of the spatial
correlation matrix, and defined, respectively, as in Eq. (9.7) and as

Rf D Efhf hH
f g: (9.13)

Hereafter, Rf is referred to as a normalized spatial correlation matrix, and assumed
to be non-singular as in [4] to ensure that the spatial correlation matrix defined as in
Eq. (9.12) is non-singular.

Then, based on Eqs. (9.6) and (9.12), the generative model of the desired signal
is modeled by an M -dimensional complex Gaussian PDF with a zero mean vector,
denoted by 0, and a covariance matrix that is equal to the spatial correlation matrix.
It is defined as

p.zn;f jvn;f ; Rf / D N .M/
c .zn;f I 0; vn;f Rf /: (9.14)
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In the above equation, vn;f and Rf , respectively, represent the spectral and spatial
features of the desired signal, namely the time-varying power of the clean speech
signal at a TF point, which is common to all the microphones, and the time-invariant
normalized spatial correlation matrix of the desired signal at a frequency bin, which
models the diversity of zn;f over different microphones.

9.2.4 Generative Model of Interference

For MLSE/MAPSE, we also introduce another generative model that represents the
way in which the captured speech is contaminated by interference. It is defined
as a probabilistic model for the process of generating the interference. The model
depends on the speech capture situation under consideration, so in the following
we explain the idea of MLSE/MAPSE by using an example case, in which the
interference can be modeled by a multivariate complex Gaussian PDF3 that will
be used later in this chapter to apply MLSE to BSS [4].

Let a
.m/

n;f be the interference signal at a TF point captured by the m-th microphone,

and an;f be a spatial vector of a
.m/

n;f . Then, assuming that the generative model of the
interference signal can be modeled by a multivariate complex Gaussian distribution
separately at each TF point, it is defined as

p.an;f j�f / D N .M/
c .an;f I 0; †n;f .�f //; (9.15)

where �f is a set of parameters of the model, and †n;f .�f / is a model of the spatial
correlation matrix of the interference signal. For example, as will be explained for
the application to BSS, †n;f .�f / may be modeled by a sum of the spatial correlation
matrices of all the interfering sounds that are parameterized by �f .

3The same model can be used to represent ambient noise, for example, as in [10]. The way to
formulate MLSE for denoising and its extension to MAPSE can be found in [12]. As regards
MLSE based dereverberation with the long-term linear prediction approach, the generative model
of the interference can be defined in the following form [10, 11, 16].

p.an;f j�f / D ı.an;f � rn;f .�f //; (9.16)

where ı.�/ is the Dirac delta function, and rn;f .�f / D Œr
.1/

n;f .�f /; r
.2/

n;f .�f /; : : : ; r
.M /

n;f .�f /	T is a
spatial vector of the interference signal, namely the late reverberation signal. The model parameter
set �f is composed of the prediction coefficients, and the late reverberation r

.m/

n;f .�f / is modeled
by an inner product of a vector containing the prediction coefficients and that containing a
past captured signal in the MLSE based dereverberation. It was shown that the MLSE based
dereverberation can be extended to MAPSE based dereverberation as discussed in [11] based on
the technique discussed in this chapter.
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According to the above model and assuming xn;f D zn;f C an;f , we can derive
the conditional PDF of the captured signal given the desired signal as

p.xn;f jzn;f ; �f / D N .M/
c .xn;f I zn;f ; †n;f .�f //: (9.17)

9.3 Speech Enhancement Based on Maximum Likelihood
Spectral Estimation (MLSE)

This chapter outlines the way that MLSE estimates speech spectra based on
maximum likelihood estimation using the generative models defined in the previous
chapter, and explains how it can be applied to multichannel speech enhancement.

9.3.1 Maximum Likelihood Spectral Estimation (MLSE)

In MLSE, a likelihood function is introduced to estimate the speech spectra based
on its maximization. Using the above generative models, the likelihood function
is defined as a conditional PDF of the captured signal, x, given a set of unknown
parameters to be estimated, 
 D fv; R; �g. In 
, v is a temporal-spectral vector
composed of vn;f for all TF points, R is a set of normalized spatial correlation
matrices, Rn;f , for all TF points, and � is a combination of sets �f of the interference
generative model for all frequency bins f . Note that v is composed of the power
spectra of the clean speech at all the time frames, which are hereafter referred
to simply as clean speech power spectra. Let x and z be temporal-spectral-spatial
vectors composed, respectively, of x

.m/

n;f and z.m/

n;f for all time frames n, frequency
bins f , and microphones m. Then, the likelihood function is defined as

L .
/ D p.xjv; R; �/: (9.18)

It can be further rewritten as

p.xjv; R; �/ D
Z

p.xjz; �/p.zjv; R/dz; (9.19)

D
Y
n;f

Z
p.xn;f jzn;f ; �f /p.zn;f jvn;f ; Rf /dzn;f : (9.20)

In Eq. (9.20), p.zn;f jvn;f ; Rf / and p.xn;f jzn;f ; �/ correspond, respectively, to the
generative model of the desired signal as in Eq. (9.14) and to the generative model
of the interference defined, for example, by Eq. (9.17).
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The MLSE approach estimates the clean speech power spectra v as the part of
the parameters that maximizes the likelihood function in Eq. (9.18) as follows:

O
 D arg max



L .
/: (9.21)

Among the estimated parameters in O
 D fOv; OR; O�g, Ov and OR represent the spectral
and spatial features of the desired signal, respectively, and O� represents the spatial
and spectral features of the interference.

When we assume that the interference can be modeled by a complex Gaussian
distribution as in the previous section, the above likelihood function can be further
rewritten as

p.xjv; R; �/ D
Y
n;f

N .M/
c .xn;f I 0; †

.x/

n;f /; (9.22)

where

†
.x/

n;f D vn;f Rf C †n;f .�f /: (9.23)

Equation (9.22) means that xn;f has a multivariate complex Gaussian distribution

with a zero mean vector and a time-varying spatial correlation matrix, †
.x/

n;f , which
is parameterized by Eq. (9.23). Then, by maximizing the likelihood function, MLSE
jointly estimates all the parameters, v, R, and � , so that the multichannel captured
signal, xn;f , best matches the time-varying spatial correlation matrix, †

.x/

n;f in
Eq. (9.23), based on Eq. (9.21).

A specific procedure for maximizing the likelihood function will be presented
for BSS in Sect. 9.5.1.

9.3.2 Processing Flow of MLSE Based Speech Enhancement

Figure 9.2 shows the general processing flow of speech enhancement based on
MLSE. It is also summarized in Algorithm 1.

MMSE
filtering

MLSE

STFT ISTFTtx
(m)

tz
(m)ˆ

zn,fxn,f ˆ

Θ̂

Fig. 9.2 Processing flow of MLSE based speech enhancement
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Algorithm 1 Processing flow of MLSE

1. Apply STFT to x
.m/
t in the time domain for all m, and obtain the captured signal x in the TF

domain.
2. The clean speech power spectra, v, the normalized spatial correlation matrices, R, and the

parameters of the interference generative model, � , are estimated as Ov, OR, and O� , respectively,
based on Eq. (9.21).

3. The desired signal, zn;f , is estimated based on the minimum mean square error (MMSE)

estimation [8] using the estimated parameters, Ov, OR, and O� , as follows:

Ozn;f D
Z

zn;f p.zn;f jxn;f ; Ovn;f ; ORf ; O�f /dzn;f ; (9.24)

When we assume as in Sect. 9.2.4 that the interference can be modeled by a complex Gaussian
distribution, the above estimation results in the well-known multichannel Wiener filter, which
is defined as

Ozn;f D



1

Ovn;f

OR�1
f C †�1

n;f . O�f /

�
�1

1

vn;f

OR�1
f xn;f : (9.25)

4. Apply ISTFT to Oz to obtain Oz.m/
t in the time domain for all m.

9.4 Speech Enhancement Based on Maximum A Posteriori
Spectral Estimation (MAPSE)

While MLSE estimates clean speech power spectra by maximizing the likelihood
function, which is defined as the conditional PDF of a captured signal given
clean speech power spectra, MAPSE estimates the clean speech power spectra by
maximizing the Maximum A Posteriori (MAP) function, which is defined as the
conditional PDF of clean speech power spectra given a captured signal. It is defined
and rewritten as follows:

M .
/ D p.vjx; R; �/; (9.26)

D p.xjv; R; �/p.v/

p.x/
; (9.27)

/ p.xjv; R; �/p.v/; (9.28)

where 
 D fv; R; �g is a set of unknown parameters to be estimated as in the
likelihood function for MLSE. As indicated in the above equations, the MAP
function is proportional to the product of the likelihood function, p.xjv; R; �/,
for MLSE and the prior distribution of the clean speech power spectra, namely
the spectral prior, p.v/. Accordingly, MAPSE estimates the speech spectra taking
account of both the likelihood function that represents the generative model of the
captured signal depending on unknown spectral and spatial features of the speech
and the interference, and the speech spectral prior that represents the kind of spectral
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features that the speech tends to possess. As a consequence, MAPSE can avoid cases
where the estimated speech spectra have values that they could never have based on
the spectral prior. In this sense, MAPSE can be more reliable than MLSE.

In MAPSE proposed in this chapter, we model the log-power spectra, �n, of
a clean speech signal with spectral priors, instead of directly modeling the power
spectra, vn, of the signal. Further, we use a Gaussian Mixture Model (GMM) to
represent the spectral prior of the log-power spectra, denoted by p.�n/, as will be
described in Sect. 9.4.2. As a consequence, MAPSE provides better accuracy than
MLSE for spectral estimation based on the spectral prior.

9.4.1 Maximum A Posteriori Spectral Estimation (MAPSE)

While MLSE estimates the power of a clean speech signal, vn;f , based on maximum
likelihood estimation, MAPSE estimates the log-power of a signal, �n;f , based on
MAP estimation. The relationship between �n;f and vn;f is defined as

�n;f D log vn;f : (9.29)

Let � be a temporal-spectral vector of �n;f for all n and f , which is referred to as
the log-power spectra, hereafter. Then, based on Eq. (9.29), we re-define the MAP
function in Eq. (9.27) as

M .
/ D p.x; �jR; �/; (9.30)

D p.xj�; R; �/p.�/; (9.31)

where we omitted a constant term p.x/ because it does not depend on �, R or � , and
we set 
 D f�; R; �g. p.xj�; R; �/ in the above equation is the likelihood function
of x given the log-power spectra �, and it is equal to the likelihood function in
Eq. (9.18) via the relationship in Eq. (9.29), that is

p.xj�; R; �/ D p.xjv D exp.�/; R; �/; (9.32)

where exp.�/ is the element-wise exponential function. p.�/ in Eq. (9.31) is the
spectral prior for �. Letting �n be a spectral vector of �n;f at a time frame n, we
further assume that p.�/ in Eq. (9.31) can be decomposed into p.�/ D Q

n p.�n/,
where p.�n/ is the spectral prior for the log-power spectrum �n.

Similar to MLSE, MAPSE estimates the clean speech power spectra � as the part
of the parameters that maximizes the MAP function in Eq. (9.31) as follows:

O
 D arg max



M .
/: (9.33)
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9.4.2 Log-Spectral Prior of Speech

MAPSE described in this chapter uses a GMM for modeling the spectral prior, p.�/,
of speech log-power spectra. This model is hereafter referred to as the Log-Power
Spectral GMM (LPS-GMM) [5,15,20]. This section discusses why we use the LPS-
GMM as the model for the log-power spectra, and defines it concretely.

In MLSE, a clean speech signal, v, is estimated as the variance of the quasi-
stationary Gaussian distribution in Eq. (9.6). With this model, we may adopt the
inverse Gamma distribution as the prior distribution of vn;f . The inverse Gamma
distribution is known as the conjugate prior for the variance of a univariate Gaussian
distribution. It allows us to obtain an analytical solution to the maximization of
the MAP function [2]. However, the distribution shape that an inverse Gamma
distribution can represent is limited to a relatively simple one, and thus it is
difficult to accurately model the distribution of the speech log-power spectra using
the inverse Gamma distribution. So, we adopt the LPS-GMM, which can more
accurately model the distribution of the speech power spectra.

We adopt the log-power spectra instead of the power spectra as the spectral
features because an entire set of speech log-power spectra can be clustered into
certain subsets, each of which can be well modeled by a Gaussian distribution. Here,
we explain this in an intuitive manner using Fig. 9.3. The figure shows histograms
of the power of a speech signal at 3 kHz and that of the log power of the speech
signal, which correspond to speech short time frames of the utterance /a/. While
the histogram of the power has a sharp peak around zero with a heavy tail on the
positive half line, the histogram of the log power has a symmetric unimodal shape
like a Gaussian distribution. This suggests that the log power could be well modeled
by a Gaussian distribution.

The advantage of using the GMMs for the spectral prior can be explained as
follows. As indicated in Fig. 9.3, the power of a speech signal corresponding to a

Fig. 9.3 Histograms of power (left) and log-power (right) at 3 kHz corresponding to speech short
time frames of the utterance /a/. A red solid line in the left panel shows a Gaussian distribution
fitted to the histogram
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type of phoneme /a/ can be well modeled by a single Gaussian. However, actual
speech is composed not only of /a/ but also of many other phonemes, which have
spectral shapes that differ greatly from those of /a/. So, the distribution of the speech
log power for many phonemes has a multimodal shape that can be viewed as a
weighted sum of many Gaussians. Therefore, it is straightforward to use a GMM to
model the distribution of the speech log power as a whole. It may be important to
note that it is well-known that the use of a GMM is advantageous when modeling
the envelopes of speech log-power spectra and for achieving accurate ASR by
computer [23].

Now let us define the LPS-GMM used for MAPSE in this chapter. We model the
log-power spectrum, �n, at a time frame n by a GMM as follows.

p.�n/ D
KX

kD1

p.�n; kn D k/; (9.34)

D
KX

kD1

�kp.�njkn D k/; (9.35)

p.�njkn D k/ D N .L/.�nI �k; †k/; (9.36)

where N .p/.�/ is a PDF of a p-dimensional real-valued Gaussian distribution, K

is the number of Gaussians of the GMM, and �k and †k are mean vector and
covariance matrix of the k-th Gaussian, respectively. In the above equation, we
assume that one of the Gaussians defined in Eq. (9.36) is activated at each time
frame n, and generates a log-power spectra �n. kn is the index of the Gaussian that
is activated at the time frame n, and is assumed not to be observed, namely dealt
with as a hidden variable as in Eq. (9.34). �k D p.kn/ is the prior distribution of kn,
referred to as the mixture weight of the k-th Gaussian, and is assumed to satisfy

KX
kD1

�k D 1; �k � 0: (9.37)

The mean vector �k is composed of mean values in all the frequency bins as

�k D Œ�k;0; �k;2; : : : ; �k;F �1	T ; (9.38)

and we assume †k to be a diagonal covariance matrix that can be defined as

†k D

2
666664

2
k;0 0

2
k;1

: : :

0 2
k;F �1

3
777775

: (9.39)
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Note that it is desirable to use a full covariance matrix for †k to accurately model
the statistical characteristics of the speech log-power spectra, however, the use of
the full covariance matrix significantly increases the computational complexity of
MAPSE. So, for the sake of computational efficiency, MAPSE adopts a diagonal
covariance matrix for †k , that is, Eq. (9.36) can be further decomposed as

p.�njkn D k/ D
Y
f

p.�n;f jkn D k/; (9.40)

p.�n;f jkn D k/ D N .1/.�n;f I �k;f ; 2
k;f /: (9.41)

9.4.3 Expectation Maximization (EM) Algorithm

It is difficult to obtain an analytical solution that maximizes the MAP function
in Eq. (9.31) because of the use of spectral priors based on GMMs that includes
a hidden variable kn. Instead, MAPSE solves this problem by using an iterative
optimization framework, namely the Expectation Maximization (EM) algorithm [3].
Letting X , Y , and Z be observed data, parameters to be estimated, and hidden
variables, respectively, the EM algorithm maximizes a MAP function defined as

M .Y / D p.X; Y /; (9.42)

D
Z

p.X; Y; Z/dZ; (9.43)

by alternately iterating the E-step and the M-step. The E-step calculates a function,
referred to as the Q-function, based on the updated estimation of Y , denoted by OY ,
and the M-step updates OY as Y that maximizes the Q-function. The Q-function is
defined as

Q.Y j OY / D E
n
log p.X; Y; Z/j OY

o
; (9.44)

D
X

Z

p.ZjX; OY / log p.X; Y; Z/ (9.45)

where Eflog p.X; Y; Z/j OY g is a posterior expectation of log p.X; Y; Z/ given OY ,
and is defined as Eq. (9.45).

With MAPSE, a set of parameters to be estimated is summarized as 
 D
f�; R; �g. With the LPS-GMM, the hidden variable is the index of the Gaussians
that are activated at each time frame n, namely kn, in Eq. (9.36). Letting k be a set
of kn for all n, the Q-function can be defined and rewritten as

Q.
j O
/ D Eflog p.x; �; kjR; �/j O
g; (9.46)

D log p.xj�; R; �/ C Eflog p.�; k/j O�g: (9.47)
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Each term in the above equation can further be rewritten as

log p.xj�; R; �/ D
NX

nD1

F �1X
f D0

log p.xn;f j�n;f ; Rf ; �f /; (9.48)

Eflog p.�; k/j O�g D
NX

nD1

Eflog p.�n; kn/j O�ng; (9.49)

D
NX

nD1

KX
knD1

p.knj O�n/ log p.�n; kn/; (9.50)

where

log p.�n; kn/ D log �kn C
F �1X
f D0

log p.�n;f jkn/: (9.51)

As in the above, most of the terms in the Q-function can be decomposed into terms
in individual TF points. Therefore, letting 
f be a subset of 
 containing the
parameters for the generative model at a frequency bin f , the Q-function can be
rewritten further as

Q.
j O
/ D
F �1X
f D0

NX
nD1

Qn;f .
f j O
/ C
NX

nD1

KX
knD1

p.knj O�n/ log �kn ; (9.52)

Qn;f .
f j O
/ D p.xn;f j�n;f ; Rf ; �f / C
KX

knD1

p.knj O�n/ log p.�n;f jkn/:(9.53)

In the above equations, p.knj O�n/ is a posterior distribution of kn when �n D O�n is
given, and it can be calculated as

p.knj O�n/ D �knN
.L/. O�nI �kn

; †kn/PK
knD1 �knN

.L/. O�nI �kn
; †kn/

: (9.54)

According to the EM algorithm and the above Q-function, we can estimate
the log-power spectra, �, that maximizes the MAP function in Eq. (9.31) via the
following steps.

1. Initialize O�, OR, and O� .
2. (E-step) Calculate p.knj O�n/ for all n with Eq. (9.54).
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3. (M-step) Update O�, OR, and O� as �, R, and � that maximize (or at least increase)
the Q-function defined by Eqs. (9.52) and (9.53). For example, this step may be
accomplished by alternate update of O�, OR, and O� as follows:

a. (M-step1) Assuming R D OR and � D O� to be fixed, update O�n;f at each TF
point .n; f / as �n;f that maximizes Eq. (9.53).

b. (M-step2) Assuming � D O� and � D O� to be fixed, update ORf at each TF
point .n; f / as Rf that maximizes the first term in Eq. (9.53).

c. (M-step3) Assuming � D O� and R D OR to be fixed, update O�f at each
frequency bin f as �f that maximizes the first term in Eq. (9.52).

4. Iterate the above steps 2 and 3 until convergence is obtained.

A concrete steps for maximizing the MAP function based on the EM algorithm
will be presented for BSS in Sect. 9.5.2.2.

9.4.4 Update of O�n;f Based on Newton–Raphson Method

In the above EM iterations, all the parameters that maximize the Q-function in the
M-step may be obtained analytically except for the log-power spectra, O�. In contrast,
� that maximizes Eq. (9.53) in M-step1 cannot be obtained analytically because of
the non-linear relationship derived from Eq. (9.29) between the likelihood function
and the spectral prior. So, it is very important to find an efficient way to update O� for
MAPSE. We will explain how we can solve this problem below.

Set the first derivative of Eq. (9.53) that should be zero as @Qn;f =@�n;f =0.
Based on the generative models given in this chapter for the general speech
capture scenario with a certain amount of mathematical manipulations, the resultant
equation can be rewritten in the following form,

exp.u/ C u C ˇ D 0; (9.55)

where ˇ is a scalar constant derived from @Qn;f =@�n;f and u is a scalar variable
depending only on �n;f . A concrete derivation of the above equation for BSS will
be shown in Sect. 9.5.2.2 and that for dereverberation and denoising can be found in
[11, 12]. �n;f that maximizes Eq. (9.53) can be obtained by finding u that satisfies
the above equation. Since the above equation includes a linear term and a non-
linear term, u and exp.u/, we still cannot obtain an analytical solution for it. Instead,
we can obtain the solution in a computationally efficient manner by employing the
Newton–Raphson method because the left hand side is a monotonically increasing
convex function with a scalar variable.
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Based on the Newton–Raphson method, the estimation of u can be accomplished
via the following steps.

1. Initialize the estimate of u, denoted by Ou, as follows

Ou D
(

log.�ˇ/ .ˇ � �1=2/

�ˇ .ˇ > �1=2/
(9.56)

2. Iterate the following steps until convergence is obtained.

a. Obtain Ou0 as

Ou0 D Ou � exp.Ou/ C r C ˇ

exp.Ou/ C 1
: (9.57)

b. Update Ou as Ou D Ou0

The above step1 allows us to set the initial value of u at a point relatively close to
the solution according to the given form of Eq. (9.55). Our preliminary experiment
showed that the above procedure gives a good estimate of u, which is very close to
the true solution of Eq. (9.55), after only two iterations in most cases.

9.4.5 Processing Flow

Figure 9.4 shows the processing flow of MAPSE based speech enhancement. The
difference from the processing flow of MLSE based speech enhancement (see
Fig. 9.2) is only in the spectral estimation block. The processing flow is also
summarized by Algorithm 2.

LPS-GMM

MMSE
filtering

MAPSE

STFT ISTFTtx
(m)

tz
(m)ˆ

zn,fxn, f ˆ

Θ̂

Fig. 9.4 Block diagram of MAPSE based speech enhancement
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Algorithm 2 Processing flow of MAPSE

1. Apply STFT to x
.m/
t at each time frame for all m, and obtain the captured signal x in the TF

domain.
2. Initialize O
, for example, by applying MLSE to the captured signal with no spectral priors.
3. Estimate O
 that maximizes the MAP function based on MAPSE with a spectral prior modeled

by the LPS-GMM.
4. Obtain the desired signal estimate Oz based on the MMSE estimation based on O
 and x. The

MMSE estimation for MAPSE is performed by the same equations as those for MLSE, namely
by Eqs. (9.24) and (9.25).

5. Apply ISTFT to Oz to obtain z
.m/
t for all m in the time domain.

BSS

(1)
fh

(2)
fh

ATFs

(3)
fh

+

Mics
ˆ

Desired
signal

Captured
signal

Separated
signal

n, fs(3)

n, fs(2)

n, fs(1)

xn,f

zn,f
(3)

zn,f
(2)

zn,f
(1)

zn,f
(1)

ẑn,f
(3)

ẑn,f
(2)

Fig. 9.5 Illustration of speech capture by microphones followed by blind source separation (BSS)

9.5 Application to Blind Source Separation (BSS)

This section describes how we can apply MAPSE to BSS. The goal of BSS is to
separate a captured signal, which is a sound mixture composed of more than one
sound, into individual sounds. Figure 9.5 is a schematic diagram showing how a
sound mixture is captured by microphones and separated into individual sounds by
BSS. In particular, when the number of sources exceeds the number of microphones,
the BSS framework is referred to as underdetermined BSS. An MLSE based BSS
approach has been proposed for underdetermined BSS [4], and it is known as one
of the most advanced underdetermined BSS techniques. We refer to it as ML-BSS
in this chapter. In the following, we first describe ML-BSS, and then extend it to the
MAPSE based BSS approach, referred to as MAP-BSS hereafter, by introducing the
LPS-GMMs defined in the previous section as the spectral priors for all the sources.

9.5.1 MLSE for BSS (ML-BSS)

In the following, we first describe ML-BSS before formulating MAP-BSS.
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9.5.1.1 Generative Models for ML-BSS

The goal of BSS is to separate a sound mixture into individual sounds. Therefore, the
desired signals for BSS are defined for individual sources included in the captured
signals. To distinguish the desired signals in equations, hereafter we attach a source
index, i , to symbols associated with each source, that is, z.i/

n;f . Then, we assume that
each desired signal is generated based on the generative model that is defined in
Eq. (9.14) in Sect. 9.2.3. With the source index, it is rewritten as

p.z.i/

n;f jv.i/

n;f ; R.i/

f / D N .M/
c .z.i/

n;f I 0; v.i/

n;f R.i/

f /; for i D 1; 2; : : : ; Ns; (9.58)

where Ns is the number of sources. As in [4], we also assume that the normalized
spatial correlation matrix, R

.i/

f , is nonsingular so that the covariance matrix of the
above Gaussian PDF is nonsingular.

Then, the captured signal is modeled as the sum of the desired signals as

xn;f D
NsX

iD1

z.i/

n;f : (9.59)

Following the general speech capture scenario described in Sect. 9.2.1, the above
equation can be interpreted as the process whereby one of the desired signals, z.i/

n;f ,
is contaminated by the interference, which is composed of the sum of the other
desired signals. Then, the generative model of the captured signal given a desired
signal, which was previously derived as in Eq. (9.17), can be derived for ML-BSS as

p.xn;f jz.i/

n;f ; �
.i/

f / D N .M/
c .xn;f I z.i/

n;f ; †n;f .�
.i/

f //; (9.60)

†n;f .�
.i/

f / D
X
i 0¤i

v.i 0/

n;f R.i 0/

n;f ; (9.61)

where �
.i/

f is a set of parameters for the interference generative model, composed

of v.i 0/

n;f and R.i 0/

n;f for i 0 ¤ i at a frequency bin f , and †n;f .�
.i/

f / is the spatial
correlation matrix of the interference. Similarly, the generative model of the
captured signal given clean speech signals for all the sources, previously derived
as in Eq. (9.22), can be derived for ML-BSS as

p.xjv; R/ D
Y
n;f

N .M/
c .xn;f I 0; R.x/

n;f /; (9.62)

R.x/

n;f D
NsX

iD1

v.i/

n;f R.i/

f ; (9.63)
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where v and R are a set of v.i/

n;f and that of R.i/

n;f for all TF points and for all sources,

and R.x/

n;f is a time-varying spatial correlation matrix of x, which is modeled by
the sum of the time-varying spatial correlation matrices of all the sources as in
Eq. (9.63).

9.5.1.2 MLSE Based on EM Algorithm

Letting 
 D fv; Rg be the parameters to be estimated, the likelihood function for
the ML-BSS is defined as follows:

L .
/ D p.xjv; R/: (9.64)

Then, MLSE is achieved by obtaining 
 that maximizes the likelihood function as

O
 D arg max



L .
/: (9.65)

Unfortunately, we do not have a closed form solution for the above maximization.
Instead, for the maximization, we decompose the parameter set 
 into its subsets,

.i/, for i D 1; : : : ; Ns , so that each subset is composed of v.i/

n;f and R.i/

n;f of a source

i for all the TF points, and adopt an iterative optimization scheme, where 
.i/ for
each source i is alternately updated by fixing 
.i 0/ for i 0 ¤ i . In concrete, as in the
following equation, we update 
.i/ alternately for each i by fixing 
.i 0/ for i 0 ¤ i

at their previously updated values, denoted by O
.i 0/.

O
.i/ D arg max

.i/

L . O
.1/; : : : ; O
.i�1/; 
.i/; O
.iC1/; : : : ; O
.Ns//: (9.66)

By iterating the above alternate updates until convergence is obtained, we can update
all the parameters in 
 that (locally) maximize the likelihood function.

For the update in Eq. (9.66), we can use the EM algorithm. Dealing with the
desired signal, z.i/, as hidden variables, and omitting constant terms, the Q-function
for the EM algorithm can be defined and rewritten as

Q.i/.
.i/j O
/ D Eflog p.x; z.i/jv.i/; R.i/; O�.i//j O
g; (9.67)

D
Z

p.z.i/jx; Ov.i/; OR.i/; O�.i// log p.x; z.i/jv.i/; R.i/; O�.i//dz.i/; (9.68)

D
X
n;f

Z
p.z.i/

n;f jxn;f ; Ov.i/

n;f ; OR.i/

n;f ; O�.i/

f / log p.xn;f ; z.i/

n;f jv.i/

n;f ; R.i/

n;f ; O�.i/

f /dz.i/

n;f :

(9.69)
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Then, based on Eqs. (9.58) and (9.60), we obtain

Q.i/.
.i/j O
/ D �
X
n;f

8̂
<̂
ˆ̂:

tr


�
R.i/

f

	�1 OR.i/

n;f

�

v.i/

n;f

C M log v.i/

n;f C log det R.i/

f

9>>=
>>;

;

(9.70)

where tr.�/ is a trace of a matrix, det.�/ indicates a determinant of a matrix, and
OR.i/

n;f D Efz.i/

n;f z.i/

n;f
H jx; O
g is the posterior expectation of the desired signal’s

spatial correlation matrix obtained by the following equations.

W.i/

n;f D Ov.i/

n;f
OR.i/

f

� OR.x/

n;f

	�1

; (9.71)

Oz.i/

n;f D W.i/

n;f xn;f ; (9.72)

OR.i/

n;f D Oz.i/

n;f
Oz.i/

n;f
H C .I � W.i/

n;f /Ov.i/

n;f
OR.i/; (9.73)

where I is the identity matrix.
Based on the EM algorithm, the update of 
.i/ can be performed by iterating the

E-step and the M-step with the above Q-function. In the E-step, we obtain posterior
expectation of the spatial correlation matrix, OR.i/

n;f D Efz.i/

n;f z.i/

n;f
H jx; O
g, for all TF

points by Eqs. (9.71)–(9.73). In this step, the multichannel filter, W.i/

n;f , obtained by
Eq. (9.71) is identical to a multichannel Wiener filter, and Eq. (9.72) can be viewed
as an operation to apply the filter to the spatial vector of the captured signal, xn;f ,

to update the estimate of the desired signal, Oz.i/

n;f . In the M-step, we update Ov.i/

n;f and
OR.i/

f of the source i for all n and f as those that maximize Eq. (9.70). They are
obtained as follows:

Ov.i/

n;f D 1

M
tr


� OR.i/

f

	�1 OR.i/

n;f

�
; (9.74)

OR.i/

f D 1

N

NX
nD1

1

Ov.i/

n;f

OR.i/

n;f : (9.75)

Note that the above update equations can be viewed as an operation that decomposes
the time-varying spatial correlation matrix OR.i/

n;f into the time-varying clean speech

power, Ov.i/

n;f , and the time-invariant normalized spatial correlation matrix, OR.i/

f .
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Fig. 9.6 Block diagram of ML-BSS

Algorithm 3 Processing flow of ML-BSS

1. Initialize Ov and OR, for example, based on the method proposed in [9].
2. Iterate the following steps until convergence is obtained.

a. For each source i , perform the following steps.

i. (E-step) Obtain OR.i/

n;f based on Eqs. (9.71)–(9.73) for all TF points.

ii. (M-step) Update Ov.i/

n;f and OR.i/

n;f for all TF points based on Eqs. (9.74) and (9.75).

3. Perform permutation alignment, e.g., based on the method proposed in [21].
4. Perform multichannel Wiener filtering based on Eqs. (9.71) and (9.72) for all i , n, and f , to

separate the captured signal, xn;f , into individual desired signals, Oz.i/

n;f .

9.5.1.3 Processing Flow of ML-BSS Based on EM Algorithm

Figure 9.6 and Algorithm 3 show the processing flow of ML-BSS based on the EM
algorithm.

In the flow, the initialization of Ov and OR is first performed. In this chapter, we
assume that the initial values can be set relatively close to the global maximum
point, for example, based on a method proposed in [9].

Then, MLSE is performed to estimate the parameters, 
. As written in step 2 of
Algorithm 3, the estimation is conducted by applying the EM algorithm to update
parameters of each source in turn as in the following.

• In the E-step of MLSE, a multichannel filter, W.i/

n;f , which is identical to a
multichannel Wiener filter, is first calculated by Eq. (9.71) based on updated
parameters. Then, W.i/

n;f is applied to the captured signal, xn;f , by Eq. (9.72) to

update the estimate of the desired signal, Oz.i/

n;f . Finally, the posterior expectation

of the spatial correlation matrix for the desired signal, OR.i/

n;f , is updated by
Eq. (9.73).

• In the M-step of MLSE, the power of the clean speech signal, Ov.i/

n;f , and the

normalized spatial correlation matrix of the desired signal, OR.i/

n;f , are updated

by decomposing OR.i/

n;f using Eqs. (9.74) and (9.75).
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Because the above EM Algorithm is performed independently in each frequency
bin, a set of parameters estimated for a source at a frequency bin are not associated
with those at different frequency bins in any sense. To perform BSS over all
frequency bins, we need to combine the parameters estimated at different frequency
bins into groups over all the frequency bins so that each group is composed
of the parameters corresponding to a source. This operation is referred to as
permutation alignment in the figure, and conducted after MLSE. There are many
useful techniques for this purpose, such as that proposed in [22].

Finally, MMSE filtering is applied to the captured signals, xn;f , to obtain the

estimated desired signal, Oz.i/

n;f for all i . This is identical to the filtering based on the
multichannel Wiener filter performed in the above E-step by Eqs. (9.71) and (9.72).

9.5.2 MAPSE for BSS (MAP-BSS)

Now, we extend ML-BSS to MAP-BSS by introducing spectral priors modeled
by LPS-GMMs as the generative models of individual sources. Because of the
introduction of the spectral priors, MAP-BSS can estimate the power spectra of
each desired signal more reliably and thus achieve more reliable BSS.

9.5.2.1 Generative Models for MAP-BSS

The generative models for MAP-BSS are almost identical to those for ML-BSS
except that MAP-BSS includes the spectral priors for individual sources. As
discussed in Sect. 9.4, each spectral prior is introduced to model the log-power
spectra of each source, and the LPS-GMM is defined as in Eqs. (9.34), (9.35), (9.40),
and (9.41). With the source index, i , the LPS-GMM is re-defined for each source as

p.�.i/
n / D

KX
kD1

p.�.i/
n ; k.i/

n D k/; (9.76)

p.�.i/
n ; k.i/

n D k/ D �
.i/

k

Y
f

p.�
.i/

n;f jk.i/
n D k/; (9.77)

p.�
.i/

n;f jk.i/
n D k/ D N .1/.�

.i/

n;f I �
.i/

k;f ; 2
k;f

.i//: (9.78)

In this chapter, we assume all the model parameters of the GMMs, namely �
.i/

k ,

�
.i/

k;f , and 2
k;f

.i/ for all i , k, and f are given in advance based on prior training
using sound databases.
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9.5.2.2 MAPSE Based on EM Algorithm

Let � and R be a set of log-power spectra �.i/ and that of normalized spatial
correlation matrices R.i/ for all the sources i , and 
 D f�; Rg be the parameters to
be estimated. Then, the MAP function for the MAP-BSS is defined as follows:

M .
/ D p.xj�; R/p.�/: (9.79)

MAPSE is achieved by obtaining 
 that maximizes the MAP function as

O
 D arg max



M .
/: (9.80)

As with MLSE, we do not have a closed form solution for the above maximization,
and we adopt an optimization scheme that alternately updates 
.i/ for each i by
fixing 
.i 0/ for i 0 ¤ i at their previously updated values, denoted by O
.i 0/, as in
Eq. (9.81).

O
.i/ D arg max

.i/

M . O
.1/; : : : ; O
.i�1/; 
.i/; O
.iC1/; : : : ; O
.Ns//: (9.81)

Then, we can use the EM algorithm for the update in Eq. (9.81). We use the desired
signal, z.i/, and the index of the Gaussian that is activated at each time frame n,
namely k

.i/
n , as the hidden variables, and omit constant terms, and define and rewrite

the Q-function for the EM algorithm as follows:

Q.i/.
.i/j O
/ D Eflog p.x; z.i/; �.i/; k.i/
n jR.i/; O�.i//j O
g; (9.82)

D
Z 1

�1
p.z.i/jx; O�.i/; OR.i/; O�.i// log p.x; z.i/j�.i/; R.i/; O�.i//dz.i/

C
NX

nD1

KX
kD1

p.k.i/
n D kj O�.i/

n / log p.�.i/
n ; k.i/

n D k/; (9.83)

Similar to Eq. (9.70) and based on Eq. (9.77), we obtain

Q.i/.
.i/j O
/ D �
X
n;f

8̂
<̂
ˆ̂:

tr


�
R.i/

f

	�1 OR.i/

n;f

�

exp.�
.i/

n;f /
C M�

.i/

n;f C log det R.i/

f

9>>=
>>;

C
X
n;f

X
k

p.k.i/
n D kj O�.i/

n / log p.�n;f jk.i/
n D k/

C
X

n

X
k

p.k.i/
n D kj O�.i/

n / log �
.i/

k ; (9.84)
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where OR.i/

n;f D Efz.i/

n;f z.i/

n;f
H jx; O
g is the posterior expectation of the desired

signal’s spatial correlation matrix obtained by using the following equations.

W.i/

n;f D exp. O�.i/

n;f / OR.i/

f

� OR.x/

n;f

	�1

; (9.85)

Oz.i/

n;f D W.i/

n;f xn;f ; (9.86)

OR.i/

n;f D Oz.i/

n;f Oz.i/

n;f
H C .I � W.i/

n;f / exp. O�.i/

n;f / OR.i/; (9.87)

and p.k
.i/
n D kj O�.i/

n / and log p.�n;f jk.i/
n D k/ can further be rewritten as

p.k.i/
n D kj O�.i/

n / D �
.i/

k N .L/. O�.i/
n I �

.i/

k ; †
.i/

k /PK
k0D1 �

.i/

k0 N .L/. O�.i/
n I �

.i/

k0 ; †
.i/

k0 /
; (9.88)

log p.�n;f jk.i/
n D k/ D � .�

.i/

n;f � �
.i/

k;f /2

22
k;f

.i/
� 1

2
log.2

k;f
.i// � 1

2
log 2�: (9.89)

Here, �
.i/

k;f and 2
k;f

.i/ are the f -th element of �
.i/

k and the f -th diagonal component

of †
.i/

k in Eq. (9.78), respectively.
Using the same form as in Eqs. (9.52) and (9.53), and omitting constant terms,

the Q-function can further be rewritten as

Q.
.i/j O
/ D
F �1X
f D0

NX
nD1

Q
.i/

n;f .

.i/

f j O
/ C
NX

nD1

KX
kD1

p.kn D kj O�.i/
n / log �

.i/

k ;

(9.90)

Q
.i/

n;f .

.i/

f j O
/ D �
tr


�
R.i/

f

	�1 OR.i/

n;f

�

exp.�
.i/

n;f /
� M�

.i/

n;f � log det R.i/

f

�
KX

kD1

p.k.i/
n D kj O�.i/

n /
.�

.i/

n;f � �
.i/

k;f /2

22
k;f

.i/
: (9.91)

With the above Q-function, we can update 
.i/ as in Eq. (9.81) by iterating the E-
step and the M-step. In the E-step, we obtain the posterior expectation of the spatial
correlation matrix, OR.i/

n;f D Efz.i/

n;f z.i/

n;f
H jx; O
g for all TF points, and the posterior

distribution of kn, p.k
.i/
n D kj O�.i/

n /, for all time frames n by using Eqs. (9.85)–
(9.88). In the M-step, we update O�.i/

n;f and OR.i/

f of the source i for all n and f as

those that maximize Eq. (9.90). Assuming �
.i/

n;f D O�.i/

n;f to be fixed, OR.i/

f can be
updated in a way similar to that for MLSE as follows:
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OR.i/

f D 1

N

NX
nD1

1

exp. O�.i/

n;f /

OR.i/

n;f : (9.92)

To update O�.i/

n;f , we need to find �
.i/

n;f that maximizes Eq. (9.91), which includes a

nonlinear term, exp.�
.i/

n;f /. For this maximization, we use the non-linear optimiza-

tion technique presented in Sect. 9.4.4. Assuming R.i/

f D OR.i/

f to be fixed and setting
the first derivative of Eq. (9.91) that should be zero as @Qn;f =@�n;f D 0, we can
rewrite the resultant equation into the following form.

exp.u/ C u C ˇ D 0; (9.93)

where

u D ��
.i/

n;f C ˛; (9.94)

ˇ D ˛

 
�M C

KX
kD1

p.k
.i/
n D kj O�.i/

n /�
.i/

k;f
2

2
k;f

.i/

! 
KX

kD1

p.k
.i/
n D kj O�.i/

n /

2
k;f

.i/

!�1

(9.95)

˛ D log tr


� OR.i/

f

	�1 OR.i/

n;f

�
� log

KX
kD1

p.k
.i/
n D kj O�.i/

n /

2
k;f

.i/
: (9.96)

The u value that satisfies Eq. (9.93) can be obtained by the method described in
Sect. 9.4.4, and then the updated O�.i/

n;f can be obtained with the estimated value, Ou,
using Eq. (9.94).

9.5.2.3 Processing Flow of MAP-BSS Based on EM Algorithm

Figure 9.7 and Algorithm 4 show the processing flow of MAP-BSS based on the EM
algorithm. The flow is slightly different from that of ML-BSS due to the introduction
of the LPS-GMM, but the difference is not large. It is summarized as follows:

Permutation
alignment

Initiali-
zation

Θ̂

ẑn,fxn,f MMSE
filtering

MAPSE

LPS-GMM

Fig. 9.7 Block diagram of MAP-BSS and MLMAP-BSS
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Algorithm 4 Processing flow of MAP-BSS

1. Initialize O� and OR, for example, based on the method proposed in [9]
2. Perform permutation alignment, e.g., based on the method proposed in [21].
3. Iterate the following steps until convergence is obtained.

a. For each source i , perform the following steps.

i. (E-step1) Obtain OR.i/

n;f based on Eqs. (9.85)–(9.87) for each TF point.

ii. (E-step2) Obtain p.k
.i/
n D kjO�.i/

n / based on (9.88) for each time frame.

iii. (M-step1) Update OR.i/

n;f for each TF point based on Eq. (9.92).
iv. (M-step2) For each TF point, obtain u that satisfies Eq. (9.93) based on the Newton–

Raphson method (Sect. 9.4.4), and update O�.i/

n;f using Eq. (9.94).

4. Perform multichannel Wiener filtering based on Eqs. (9.85) and (9.86) for all i , n, and f , to
separate the captured signal, xn;f , into individual desired signals, Oz.i/

n;f .

• � is used as the parameters to be estimated instead of v. Note, however, that most
of the update equations for MAP-BSS are identical to those of ML-BSS based
on the relationship �

.i/

n;f D log.v.i/

n;f /.
• We need to perform the permutation alignment before the spectral estimation by

MAPSE. This is because MAPSE uses the LPS-GMM that models speech spectra
over all frequency bins as a whole based on Eq. (9.34). Instead, we do not need
to perform the permutation alignment after MAPSE for MAP-BSS.

• In the E-step of MAP-BSS, we also calculate the posterior distribution of kn

given �n D O�n, namely p.k
.i/
n D kj O�.i/

n /.
• In the M-step of MAP-BSS, O�.1/

n;f is updated based not only on the likelihood
function but also on the spectral prior using the Newton–Raphson method.

9.5.2.4 Initialization of OR and O¡ (or Ov)

When we use an iterative optimization scheme such as the EM algorithm, it is
desirable to start the iteration from the initial values for parameters that are close
to the global maximum point. Such initialization may make the convergence faster,
and may work favorably to avoid cases where the iterative optimization converges
to local maximum points that are far from the global maximum point.

For this purpose, we adopt the following two initialization schemes in this
chapter.

1. It was reported that the use of direction feature clustering proposed in [22] is
useful for the initialization of OR and Ov for ML-BSS [9]. So, we adopt this scheme
not only for the initialization of ML-BSS but also for the initialization of OR and
O� for MAP-BSS.
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2. In addition, as shown in the experimental section, the use of OR and Ov estimated
by ML-BSS for the initialization of MAP-BSS can further improve the accuracy
of the source separation by MAP-BSS.

Hereafter, we refer to MAPSE based BSS with the above initialization scheme 1
simply as MAP-BSS, and that with the above initialization scheme 2 as MLMAP-
BSS. We compare the performance of the two schemes in the next section.

9.6 Experiments

This section describes two experiments that we conducted to examine the effective-
ness of ML-BSS, MAP-BSS, and MLMAP-BSS.

The first experiment compares the performance of the three methods under
various recording conditions. We used three different reverberation conditions and
two different source number conditions, including an underdetermined condition, in
this experiment.

The second experiment evaluates the three methods using a standard evaluation
task for BSS, taken from the 2010 Signal Separation Evaluation Campaign, SiSEC-
2010 [28].

9.6.1 Evaluation 1 with Aurora-2 Speech Database

We first evaluated the performance of the three methods using various sound mix-
tures that are generated by mixing continuous digit utterances randomly extracted
from Aurora-2 database [18] under different reverberation conditions. Table 9.1
summarizes the conditions used for the experiments. The number of Gaussians for
LPS-GMM, namely 256, was determined based on our preliminary experiments
so that we can obtain a sufficiently accurate speech model with relatively low
computational cost. The number of EM iterations, namely 100, was selected because
the EM algorithm converged in most cases after 100 iterations in our preliminary
experiments. Note that the number was set equally for all three methods. This
means that, for MLMAP-BSS, the total number of EM iterations for initialization
by ML-BSS and EM iterations by MAP-BSS was set at 100. Figure 9.8 shows the
condition that we set for measuring the impulse responses used to generate sound
mixtures for the test. We used audio speakers at 70ı and 150ı for the sound mixtures
composed of two sources, and used audio speakers at 70ı, 150ı, and 245ı for the
sound mixtures composed of three sources.
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Table 9.1 Experimental conditions for Evaluation 1

Sampling frequency 8 kHz

# of microphones 2

# of sources 2, 3

Microphone spacing 4 cm

# of test mixtures composed of two sources 30

# of test mixtures composed of three sources 40

Average length of test mixture 5 s

Reverberation time (T60) 110, 220, 400 ms

Analysis/synthesis window Hanning

Window length 128 ms (1,024 points)

Window shift 32 ms (256 points)

# of EM iterations 100

Training data for LPS-GMM Clean training data in Aurora-2

Size of training data for LPS-GMM 8,440 utterances

# of Gaussians used for LPS-GMM 256

4cm120cm

Room size: 4.45 m × 3.55 m × 2.50 m

150°

70°

245°

Fig. 9.8 Setting for measuring impulse responses

We used the following four measures, SDR, ISR, SIR, and SAR, proposed in [28]
to evaluate the BSS performance.

Name of measure Type of distortion to be evaluated

Signal to Distortion Ratio (SDR) Total distortion composed of the following three
types of distortion

Source Image to Spatial distortion
Ratio (ISR)

Linear distortion

Source to Interference Ratio (SIR) Remaining interference

Sources to Artifacts Ratio (SAR) Nonlinear distortion

For all these measures, higher values mean better performance.
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Fig. 9.9 SDR, ISR, SIR, and SAR obtained for Evaluation 1 using ML-BSS (ML), MAP-BSS
(MAP), MLMAP-BSS (MLMAP) on mixtures composed of two sources. Each value is averaged
over all the utterances separated by BSS

Figure 9.9 shows the evaluation results obtained under the three different rever-
beration conditions when we used sound mixtures obtained from two sources for
the test. The figure shows that the two proposed methods, MAP-BSS and MLMAP-
BSS, both substantially outperformed ML-BSS in terms of all the measures except
for SAR. This suggests that the use of the LPS-GMM improved the separation
performance. In addition, when we listen to the separated sounds, audible artifacts
and nonlinear distortion are less prominent with MAP-BSS and MLMAP-BSS
than with ML-BSS, although SAR is lower for MAP-BSS and MLMAP-BSS than
ML-BSS. This characteristic of the two proposed methods may be explained as
follows: While the MAP-BSS and MLMAP-BSS nonlinearly modified the spectral
shapes of the desired signals by the nonlinear optimization realized using LPS-
GMMs, MAP-BSS and MLMAP-BSS can still improve the audible quality of the
separated signals thanks to the use of the spectral priors modeled by LPS-GMMs.

Figure 9.10 shows the evaluation results when we used sound mixtures obtained
from three sources for the test. The figure confirms that MLMAP-BSS again
substantially outperformed ML-BSS, but MAP-BSS did not outperform ML-BSS.
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Fig. 9.10 SDR, ISR, SIR, and SAR obtained for Evaluation 1 using ML-BSS (ML), MAP-BSS
(MAP), MLMAP-BSS (MLMAP) on mixtures composed of three sources. Each value is averaged
over all the utterances separated by BSS

The difference between MAP-BSS and MLMAP-BSS is in the initialization
methods, and thus this result suggests that the performance of MAPSE based BSS
depends largely on how it is initialized. In spite of this characteristic, we always
obtained a substantial performance improvement with MLMAP-BSS by comparison
with one of the state-of-the-art BSS technique, ML-BSS.

9.6.2 Evaluation 2 with SiSEC Database

Next, we evaluated the performance of ML-BSS, MAP-BSS, and MLMAP-BSS,
using a standard data set for BSS evaluation, namely the live recordings in the
development set1 extracted from the underdetermined speech mixtures in the
SiSEC-2010 evaluation task. Table 9.2 summarizes in more details the conditions
of the evaluation using the data set.
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Table 9.2 Experimental condition for Evaluation 2

Sampling frequency 16 kHz

# of microphones 2

# of sources 3

Microphone spacing 5 cm

# of test mixtures composed of three sources 2 (one composed of three male speakers and
the other composed of three female speakers)

Average length of test mixture 10 s

Reverberation time (T60) 250 ms

Analysis/synthesis window Hanning

Window length 128 ms (2,048 points)

Window shift 32 ms (512 points)

# of EM iterations 100

Training data for LPS-GMM A clean speech data set composed of Japanese
and multilingual utterances

Size of training data for LPS-GMM 1,000 utterances

# of Gaussians used for LPS-GMM 256

The training data for LPS-GMM were extracted from Aurora-2

Table 9.3 SDR, ISR, SIR, and SAR obtained for Evaluation 2 on
mixtures composed of three sources

Male Female
Speaker Speaker
1 2 3 1 2 3

ML-BSS SDR (dB) 2:0 1:1 5:6 5:3 4:6 5:9

ISR (dB) 5:6 3:5 11:0 6:9 10:0 11:4

SIR (dB) 2:5 0:0 7:3 10:8 5:7 7:7

SAR (dB) 8:3 6:3 10:4 10:6 9:3 11:2

MAP-BSS SDR (dB) 2:8 1:4 4:5 4:8 3:2 4:5

ISR (dB) 8:0 3:2 10:0 6:6 8:7 8:8

SIR (dB) 3:8 2:6 6:5 9:9 4:4 6:6

SAR (dB) 9:2 5:1 9:6 10:2 8:9 10:1

MLMAP-BSS SDR (dB) 3:4 2:0 4:8 5:5 4:6 6:1
ISR (dB) 9:7 4:0 8:7 7:3 10:3 11:8
SIR (dB) 4:2 3:5 8:0 11:3 6:3 8:3
SAR (dB) 10:0 5:3 8:8 10:7 9:2 11:0

Bold fonts in the table highlights scores of MAP-BSS or those of
MLMAP-BSS that outnumbered those of ML-BSS

The evaluation results, namely SDR, ISR, SIR, and SAR obtained by ML-BSS,
MAP-BSS, and MLMAP-BSS using sound mixtures composed of three sources
are shown in Table 9.3. By comparing the proposed approaches (MAP-BSS and
MLMAP-BSS) with the conventional approach (ML-BSS), we confirmed that
MLMAP-BSS again substantially outperformed ML-BSS in most cases in terms
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of all the measures except for SAR, but MAP-BSS did not outperform ML-BSS in
many cases. This result is almost the same as that obtained for Evaluation 1 using
sound mixtures composed of three sources. This again indicates that the introduction
of the spectral priors can improve the performance of ML-BSS, but the performance
of MAPSE based BSS depends largely on how it is initialized.

In summary, MLMAP-BSS can be a good approach because it can substantially
outperform ML-BSS in most cases by effectively mitigating the sensitivity of
MAPSE based BSS to the initialization.

9.7 Concluding Remarks

This chapter described a versatile technique for extending a widely used multi-
channel speech enhancement approach, referred to as maximum-likelihood spectral
estimation (MLSE) based speech enhancement, to maximum a posteriori spectral
estimation (MAPSE) based speech enhancement. While MLSE mainly uses the
spatial features of the signals for speech enhancement, MAPSE also uses the
speech spectral features and priors to achieve more reliable and accurate spectral
estimation. This chapter also proposed a method that uses Gaussian mixture models
for speech log-power spectra (LPS-GMMs) as useful spectral priors for MAPSE.
Because an LPS-GMM can accurately model the complex distribution of the speech
spectra, the use of LPS-GMMs can improve the accuracy of MAPSE. As a concrete
application of MAPSE, this chapter described a method for extending MLSE
based BSS (ML-BSS) to MAPSE based BSS (MAP-BSS/MLMAP-BSS). Although
ML-BSS is known as a state-of-the-art underdetermined BSS technique, MAP-
BSS/MLMAP-BSS can achieve more accurate BSS based on the use of spectral
priors. Our experiments showed that MLMAP-BSS can stably and substantially out-
perform ML-BSS under various recording conditions, including underdetermined
conditions, in most cases.
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Chapter 10
Modulation Processing for Speech Enhancement

Kuldip Paliwal and Belinda Schwerin

Abstract Many of the traditionally speech enhancement methods reduce noise
from corrupted speech by processing the magnitude spectrum in a short-time Fourier
analysis-modification-synthesis (AMS) based framework. More recently, use of the
modulation domain for speech processing has been investigated, however early
efforts in this direction did not account for the changing properties of the modulation
spectrum across time. Motivated by this and evidence of the significance of the
modulation domain, we investigated the processing of the modulation spectrum
on a short-time basis for speech enhancement. For this purpose, a modulation
domain-based AMS framework was used, in which the trajectories of each acoustic
frequency bin were processed frame-wise in a secondary AMS framework. A
number of different enhancement algorithms were investigated for the enhancement
of speech in the short-time modulation domain. These included spectral subtraction
and MMSE magnitude estimation. In each case, the respective algorithm was used
to modify the short-time modulation magnitude spectrum within the modulation
AMS framework. Here we review the findings of this investigation, comparing the
quality of stimuli enhanced using these modulation based approaches to stimuli
enhanced using corresponding modification algorithms applied in the acoustic
domain. Results presented show modulation domain based approaches to have
improved quality compared to their acoustic domain counterparts. Further, MMSE
modulation magnitude estimation (MME) is shown to have improved speech quality
compared to Modulation spectral subtraction (ModSSub) stimuli. MME stimuli are
found to have good removal of noise without the introduction of musical noise,
problematic in spectral subtraction based enhancement. Results also show that
ModSSub has minimal musical noise compared to acoustic Spectral subtraction, for
appropriately selected modulation frame duration. For modulation domain based
methods, modulation frame duration is shown to be an important parameter, with
quality generally improved by use of shorter frame durations. From the results
of experiments conducted, it is concluded that the short-time modulation domain
provides an effective alternative to the short-time acoustic domain for speech
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processing. Further, that in this domain, MME provides effective noise suppression
without the introduction of musical noise distortion.

10.1 Introduction

Speech enhancement aims to improve the quality of noisy speech, typically by
suppressing noise in such a way that the residual noise is not annoying to listeners,
and speech distortion introduced by the enhanced process is minimised. There is an
extensive range of methods for speech enhancement in the literature, many of which
can be broadly classified as being spectral subtraction, statistical (MMSE), Kalman
filtering, Wiener filtering, or subspace based methods. The first two of these are
particularly well known, in part for being simple yet effective for enhancing speech
corrupted with additive noise distortion.

Spectral subtraction [7, 8, 33] is perhaps one of the earliest and most extensively
studied speech enhancement methods for the removal of additive noise. While
particularly effective at suppressing background noise, it does, however, result in
the introduction of perceptually annoying spectral artefacts referred to as musical
noise.

Overcoming this problem is the MMSE (minimum mean-square error) short-time
spectral amplitude estimator (referred to here as the acoustic magnitude estimator
(AME)) of Ephraim and Malah [14]. The good performance of AME has been
largely attributed to the use of the decision-directed approach for estimation of
the a priori signal-to-noise ratio (SNR) [9, 51]. Despite not being quite as effective
as spectral subtraction at suppressing noise, the colourless nature of its residual
distortion has resulted in the AME method remaining one of the most effective and
popular methods for speech enhancement in the acoustic domain.

Many of the popular single-channel speech enhancement methods in the
literature, including the above mentioned methods, perform enhancement in
the acoustic spectral domain within a short-time Fourier (acoustic) analysis-
modification-synthesis (AMS) framework. More recently, however, the modulation
domain has gained popularity for speech processing.

This popularity has been in part due to psychoacoustic and physiological
evidence supporting the significance of the modulation domain for the analysis
of speech signals. For example, the experiments of Bacon and Grantham [6]
showed that there are channels in the auditory system which are tuned for the
detection of modulation frequencies. Sheft and Yost [56] showed that our perception
of temporal dynamics corresponds to our perceptual filtering into modulation
frequency channels and that faithful representation of these modulations is critical
to our perception of speech. Experiments of Schreiner and Urbas [52] showed that a
neural representation of amplitude modulation is preserved through all levels of the
mammalian auditory system, including the highest level of audition, the auditory
cortex. Neurons in the auditory cortex are thought to decompose the acoustic
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spectrum into spectro-temporal modulation content [39], and are best driven by
sounds that combine both spectral and temporal modulations [11, 32, 54].

Further, low frequency modulations of sound have been shown to be the
fundamental carriers of information in speech [4]. Drullman et al. [12, 13], for
example, investigated the importance of modulation frequencies for intelligibility
by applying low-pass and high-pass filters to the temporal envelopes of acoustic
frequency subbands. They showed frequencies between 4 and 16 Hz to be important
for intelligibility, with the region around 4–5 Hz being the most significant. In a
similar study, Arai et al. [2] showed that applying band-pass filters between 1 and
16 Hz does not impair speech intelligibility. While the envelope of the acoustic
magnitude spectrum represents the shape of the vocal tract, the modulation spectrum
represents how the vocal tract changes as a function of time. It is these temporal
changes that convey most of the linguistic information (or intelligibility) of speech.
In the above intelligibility studies, the lower limit of 1 Hz stems from the fact that the
slow vocal tract changes do not convey much linguistic information. In addition, the
lower limit helps to make speech communication more robust, since the majority
of noises occurring in nature vary slowly as a function of time and hence their
modulation spectrum is dominated by modulation frequencies below 1 Hz. The
upper limit of 16 Hz is due to the physiological limitation on how fast the vocal
tract is able to change with time.

At this point it is useful to differentiate the acoustic spectrum from the modula-
tion spectrum as follows. The acoustic spectrum is the short-time Fourier transform
(STFT) of the speech signal, while the modulation spectrum at a given acoustic
frequency is the STFT of the time series of the acoustic spectral magnitudes at that
frequency. The short-time modulation spectrum is thus a function of time, acoustic
frequency and modulation frequency.

Modulation domain processing has found applications in areas such as speech
coding [3, 5, 60], speech recognition [21, 26, 29, 35, 40, 61, 66], speaker recogni-
tion [30,31,37,64], and objective speech intelligibility evaluation [17,19,27,45,59].
While short-time processing in the modulation domain has been used for automatic
speech recognition (ASR) [27, 29, 61], early efforts to utilise the modulation
domain for speech enhancement has assumed speech and noise to be stationary,
applying fixed filtering on the trajectories of the acoustic magnitude spectrum. For
example, Hermansky et al. [22] proposed band-pass filtering the time trajectories
of the cubic-root compressed short-time power spectrum to enhance speech. Falk
et al. [16] and Lyons and Paliwal [36] applied similar band-pass filtering to the time
trajectories of the short-time magnitude (power) spectrum for speech enhancement.

There are two main limitations associated with typical modulation filtering meth-
ods. First, they use a filter design based on the long-term properties of the speech
modulation spectrum, while ignoring the properties of noise. As a consequence, they
fail to eliminate noise components present within the speech modulation regions.
Second, the modulation filter is fixed and applied to the entire signal, even though
the properties of speech and noise change over time. To capture this nonstationarity,
speech can instead be assumed quasi-stationary, and the trajectories of the acoustic
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magnitude spectrum can be processed on a short-time basis. Therefore, through use
of short-time modulation domain processing, these limitations can be addressed.

Assuming noise to be additive, we have therefore investigated different speech
enhancement approaches within a framework which facilitates modification of the
short-time modulation spectrum. Methods evaluated include spectral subtraction,
MMSE magnitude estimation, Wiener and Kalman filtering in the modulation
domain—however details of Wiener and Kalman filtering methods are not included
here but can be found in [42] and [57]. Details of the modulation AMS framework,
and modulation spectral subtraction and MMSE modulation magnitude estimation
enhancement methods are reviewed in the following section. This is followed by
a review of findings from experiments comparing the quality of stimuli processed
using various acoustic and modulation domain enhancement methods.

10.2 Methods

10.2.1 Modulation AMS-Based Framework

As mentioned in the introduction, many frequency domain based speech enhance-
ment methods are based on the (acoustic) short-time Fourier AMS framework [ 1,7,
10, 14]. The traditional acoustic AMS procedure for speech enhancement includes
three stages: the analysis stage (where noisy speech is processed using STFT anal-
ysis); the modification stage (where the noisy spectrum is modified to compensate
for noise and distortion); and the synthesis stage (where an inverse STFT operation,
followed by overlap-add synthesis is used to reconstruct the enhanced signal).

The modulation-domain based enhancement methods described here, instead
make use of a modulation AMS-based framework, in which the traditional acoustic
AMS-based framework is extended to the modulation domain, facilitating modifi-
cation of the short-time modulation magnitude spectrum to improve speech quality.
In this framework each frequency component of the acoustic magnitude spectra,
obtained during the analysis stage of the acoustic AMS procedure, is processed
frame-wise across time using a secondary AMS procedure in the modulation
domain. This dual AMS framework we denote the modulation AMS framework,
and is described as follows.

Let us assume an additive noise model in which clean speech is corrupted by
uncorrelated additive noise to produce noisy speech as given by

x.n/ D s.n/ C d.n/; (10.1)

where x.n/, s.n/, and d.n/ are the noisy speech, clean speech, and noise signals,
respectively, and n denotes a discrete-time index. Although speech is non-stationary,
it can be assumed quasi-stationary, and therefore the noisy speech signal can be
processed frame-wise using the running STFT analysis [62] given by
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X.l; k/ D
N �1X
nD0

x.n C lZ/ w.n/ e�j 2�nk=N ; (10.2)

where l refers to the acoustic frame index, k refers to the index of the acoustic
frequency, N is the acoustic frame duration (AFD) in samples, Z is the acoustic
frame shift (AFS) in samples, and w.n/ is the acoustic analysis window function.
Speech processing typically uses the Hamming analysis window, and an AFD of
20–40 ms and an AFS of 10–20 ms [24, 34, 43, 46, 49].

Using STFT analysis, we can represent Eq. (10.1) by

X.l; k/ D S.l; k/ C D.l; k/; (10.3)

where X.l; k/, S.l; k/, and D.l; k/ are the STFTs of the noisy speech, clean speech
and noise signals, respectively. Each of these can be expressed in terms of their
acoustic magnitude spectrum and acoustic phase spectrum. In polar form, the STFT
of the noisy speech signal, for example, can be expressed as

X.l; k/ D jX.l; k/j e j †X.l;k/; (10.4)

where jX.l; k/j denotes the acoustic magnitude spectrum,1 †X.l; k/ denotes the
acoustic phase spectrum, and the discrete-time signal x.n/ is completely charac-
terised by its magnitude and phase spectra.

Traditional AMS-based speech enhancement methods modify or enhance the
noisy acoustic magnitude spectrum jX.l; k/j, while keeping the noisy acoustic
phase spectrum unchanged. One reason for this is that, for Hamming-windowed
frames (of 20–40 ms duration), the phase spectrum is considered relatively unimpor-
tant for speech enhancement [55,65]. Similarly, in the modulation AMS framework,
the noisy acoustic phase spectra is left unchanged, and the noisy acoustic magnitude
spectrum is modified by processing the time trajectories of each frequency compo-
nent of the acoustic magnitude spectra frame-wise in a second AMS procedure as
follows.

Note that traditionally, the modulation spectrum has been computed as the
Fourier transform of the intensity envelope of the band-pass filtered signal [12,
17, 23]. However here, we utilise the short-time Fourier transform (STFT) instead
of band-pass filtering. In the acoustic STFT domain, the quantity closest to the
intensity envelope of a band-pass filtered signal is the magnitude-squared spectrum.
However, more recent works [16, 28] support the suitability of using the time
trajectories of the short-time acoustic magnitude spectrum for computation of

1Note that for references made to the magnitude, phase or complex spectra throughout this text,
the STFT modifier is implied unless otherwise stated. The acoustic and modulation modifiers are
also included to disambiguate between acoustic and modulation domains.
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the short-time modulation spectrum. Therefore either the acoustic magnitude or
magnitude-squared spectra can be used for computation of the modulation spectrum.

Thus, the running STFT is used to compute the modulation spectrum from the
acoustic magnitude spectrum as

X .`; k; m/ D
N�1X
lD0

ˇ̌
X

lC`Z .k/
ˇ̌
v.l/ e�j 2�lm=N ; (10.5)

where ` is the modulation frame index, k is the index of the acoustic frequency,
m refers to the index of the modulation frequency, N is the modulation frame
duration (MFD) in terms of acoustic frames, Z is the modulation frame shift (MFS)
in terms of acoustic frames, and v.l/ is the modulation analysis window function.
The modulation spectrum can be written in polar form as

X .`; k; m/ D jX .`; k; m/j e j †X .`;k;m/; (10.6)

where jX .`; k; m/j is the modulation magnitude spectrum, and †X .`; k; m/ is the
modulation phase spectrum.

For methods presented here, the modulation magnitude spectrum of clean
speech is estimated from the noisy modulation magnitude spectrum, while the
noisy modulation phase spectrum †X .`; k; m/ is left unchanged. The modified
modulation spectrum is then given by

Y.`; k; m/ D ˇ̌ OS.`; k; m/
ˇ̌
e j †X .`;k;m/; (10.7)

where
ˇ̌ OS.`; k; m/

ˇ̌
is an estimate of the clean modulation magnitude spectrum.

Equation (10.7) can also be written in terms of spectral gain function G.`; k; m/

applied to the modulation spectrum of noisy speech as follows

Y.`; k; m/ D G.`; k; m/X .`; k; m/; (10.8)

where

G.`; k; m/ D
ˇ̌ OS.`; k; m/

ˇ̌
jX .`; k; m/j : (10.9)

The inverse STFT operation, followed by least-squares overlap-add synthesis
[48], are then used to compute the modified acoustic magnitude spectrum as
given by

jY .l; k/j D
X

`

(
vs .l � `Z/

N�1X
mD0

Y.`; k; m/ e j 2�.l�`Z/m=N
)

; (10.10)

where vs.`/ is a (modulation) synthesis window function.
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The modified acoustic magnitude spectrum is combined with the noisy acoustic
phase spectrum, to produce the modified acoustic spectrum as follows

Y .l; k/ D jY .l; k/j ej †X.l;k/: (10.11)

The enhanced speech signal is constructed by applying the inverse STFT operation,
followed by least-squares overlap-add synthesis, to the modified acoustic spectrum
giving

y.n/ D
X

l

(
ws .n � lZ/

N �1X
kD0

Y .l; k/ e j 2�.n�lZ/k=N

)
; (10.12)

where ws.l/ is the (acoustic) synthesis window function. The modified Hanning
window [20] was used for both the acoustic and modulation synthesis windows. A
block diagram of the AMS-based framework for speech enhancement in the short-
time spectral modulation domain is shown in Fig. 10.1.

10.2.2 Modulation Spectral Subtraction

Classical spectral subtraction is an intuitive and effective speech enhancement
method utilising a short-time Fourier AMS framework, and enhancing speech by
subtracting a spectral estimate of noise from the noisy speech spectrum in either the
magnitude or energy domain.

The modulation spectral subtraction method (ModSSub) [44] similarly utilises
the above modulation AMS framework. Within the modification stage of this
framework, the noisy modulation magnitude spectrum

ˇ̌X .`; k; m/
ˇ̌

is replaced with
an estimate of the clean modulation magnitude spectrum, calculated using a spectral
subtraction rule similar to the one proposed by Berouti et al. [7], and given by
Eq. (10.13).

ˇ̌ OS.`; k; m/
ˇ̌ D

8̂<
:̂
�
�.`; k; m/

	 1
�
; if �.`; k; m/ � ˇ

ˇ̌ OD.`; k; m/
ˇ̌�

�
ˇ
ˇ̌ OD.`; k; m/

ˇ̌�	 1
�
; otherwise;

(10.13)
where

�.`; k; m/ D ˇ̌X .`; k; m/
ˇ̌� � �

ˇ̌ OD.`; k; m/
ˇ̌�

: (10.14)

Here, ˇ is the spectral floor parameter used to set spectral magnitude values falling

below the spectral floor
�
ˇ
ˇ̌ OD.`; k; m/

ˇ̌�	 1
�

, to that spectral floor; and � determines

the subtraction domain (e.g., for � set to unity the subtraction is performed in the
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Fig. 10.1 Block diagram of the modulation AMS framework for speech enhancement in the short-
time spectral modulation domain
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magnitude spectral domain, while for � D 2 the subtraction is performed in the
magnitude-squared spectral domain). The subtraction factor, �, governs the amount
of over-subtraction applied, and is calculated as (following Berouti et al. [7])

� D
8<
:

5; SNR < �5

�0 � SNR
s

; �5 � SNR � 20

1; SNR > 20

(10.15)

where �0 is the value for � at an SNR of 0 dB, and 1
s

is the slope of the line from �0

at 0 dB to � D 1 at 20 dB.
The estimate of the modulation magnitude spectrum of the noise, denoted byˇ̌ OD.`; k; m/

ˇ̌
, is obtained based on a decision from a simple voice activity detector

(VAD) [34], applied in the modulation domain. The VAD classifies each modulation
domain segment as either 1 (speech present) or 0 (speech absent), using the
following binary rule

ˆ.�; k/ D
�

1; if �.�; k/ � �

0; otherwise
; (10.16)

where � is an empirically determined speech presence threshold, and �.�; k/

denotes a modulation segmental signal-to-noise ratio (SNR) computed as follows:

�.�; k/ D 10 log10

0
B@

P
m

ˇ̌X .`; k; m/
ˇ̌2

P
m

ˇ̌ OD.` � 1; k; m/
ˇ̌2
1
CA : (10.17)

The noise estimate is updated during speech absence using the following averaging
rule [63]

ˇ̌ OD.`; k; m/
ˇ̌� D �

ˇ̌ OD.` � 1; k; m/
ˇ̌� C .1 � �/

ˇ̌X .`; k; m/
ˇ̌�

; (10.18)

where � is a forgetting factor chosen according to the stationarity of the noise.
Parameters of ModSSub were determined empirically via listening tests with

stimuli constructed using a range of parameter values (see [44] for further details).
Those values found to work best are given in Table 10.1.

Table 10.1 Parameter values
applied to ModSSub

Parameter Value (ms) Parameter Value

AFD 32 � 2

AFS 8 � 3 dB

MFD 256 � 0.98

MFS 32 ˇ 0.002

�0 4
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In the ModSSub method, the frame duration used for computing the short-time
modulation spectrum (MFD) was found to be an important parameter, providing a
trade-off between musical noise distortion and spectral smearing distortion types.
Durations of 220–256 ms were found to provide the best trade-off, minimising the
musical noise apparent but with some introduction of audible spectral smearing
distortion. The disadvantages of using longer modulation domain analysis window
are as follows. Firstly, we are assuming stationarity which we know is not the
case. Secondly, quite a long portion is needed for the initial estimation of noise,
and thirdly, as shown by [41], speech quality and intelligibility is higher when
the modulation magnitude spectrum is processed using short frame durations and
lower when processed using longer frame durations. These findings suggested that
use of MMSE magnitude estimation approach, which does not introduce musical
noise distortion (for appropriately selected smoothing parameter) and therefore may
be applied using shorter MFD, would be better suited to processing in the short-time
modulation domain.

10.2.3 MMSE Modulation Magnitude Estimation

The minimum mean-square error short-time spectral amplitude estimator
of Ephraim and Malah [14] has been employed in the past for speech enhancement
in the acoustic frequency domain with much success, offering the advantage of
effective noise suppression without the introduction of perceptually annoying musi-
cal noise. Consequently, MMSE magnitude estimation was similarly investigated in
the short-time modulation domain, and found to be particular effective. Again, the
modulation AMS-based framework was utilised, and suppression of noise from the
modulation magnitude spectrum was performed as follows.

The MMSE modulation magnitude estimator (MME) [42] estimates the mod-
ulation magnitude spectrum of clean speech from noisy observations, minimising
the mean-square error between the modulation magnitude spectra of clean and
estimated speech

� D E

"

jS.`; k; m/j � ˇ̌ OS.`; k; m/

ˇ̌�2
#

(10.19)

where E
� � � denotes the expectation operator. Closed form solution to this problem

in the acoustic spectral domain has been reported by Ephraim and Malah [14] under
the assumptions that speech and noise are additive in the time domain, and that their
individual short-time spectral components are statistically independent, identically
distributed, zero-mean Gaussian random variables.

To apply MMSE processing in the modulation domain, we need to make similar
assumptions, namely that (1) speech and noise are additive in the short-time acoustic
spectral magnitude domain, i.e.,



10 Modulation Processing for Speech Enhancement 329

jX.l; k/j D jS.l; k/j C jD.l; k/j (10.20)

and (2) the individual short-time modulation spectral components of S.`; k; m/ and
D.`; k; m/ are independent, identically distributed Gaussian random variables. The
reasoning for the first assumption is that at high SNRs (greater than around 8 dB) the
phase spectrum remains largely unchanged by additive noise distortion [34, p. 104].
For the second assumption, we can apply an argument similar to that of Ephraim
and Malah [14], where the central limit theorem is used to justify the statistical
independence of spectral components of the Fourier transform. For the STFT, this
assumption is valid only in the asymptotic sense, that is, when the frame duration is
large. However, Ephraim and Malah have used an AFD of 32 ms in their formulation
to achieve good results. For MMSE magnitude estimation in the modulation domain,
we should also make the MFD to be as large as possible, however it must not be so
large as to be adversely affected by the nonstationarity of the magnitude spectral
sequence.

With the above assumptions in mind, the modulation magnitude spectrum of
clean speech can be estimated from the noisy modulation spectrum under the MMSE
criterion [following 14] as

ˇ̌ OS.`; k; m/
ˇ̌ D E

� ˇ̌S.`; k; m/
ˇ̌ ˇ̌ˇX .`; k; m/

�
(10.21)

D G.`; k; m/
ˇ̌X .`; k; m/

ˇ̌
(10.22)

where G.`; k; m/ is the MME spectral gain function given by

G.`; k; m/ D
p

�

2

p
�.`; k; m/

�.`; k; m/
ƒ
h
�.`; k; m/

i
: (10.23)

Here, �.`; k; m/ defined as

�.`; k; m/ , �.`; k; m/

1 C �.`; k; m/
�.`; k; m/ (10.24)

and ƒ
� � � is the function

ƒ
�
�
� D exp



��

2

��
.1 C �/I0



�

2

�
C � I1



�

2

��
; (10.25)

where I0 .�/ and I1 .�/ denote the modified Bessel functions of zero and first order,
respectively. In the above equations �.`; k; m/ and �.`; k; m/ are interpreted [after
38] as the a priori SNR, and the a posteriori SNR. These quantities are defined as
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�.`; k; m/ ,
E
h
jS.`; k; m/j2

i

E
h
jD.`; k; m/j2

i (10.26)

and

�.`; k; m/ , jX .`; k; m/j2
E
h
jD.`; k; m/j2

i : (10.27)

respectively.
Since in practice only noisy speech is observable, the �.`; k; m/ and �.`; k; m/

parameters have to be estimated. For this we apply the decision-directed
approach [14] in the short-time spectral modulation domain. In the decision-directed
method the a priori SNR is estimated by recursive averaging as follows

O�.`; k; m/ D ˛

ˇ̌ OS.` � 1; k; m/
ˇ̌2

O�.` � 1; k; m/
C .1 � ˛/ max

h
O�.`; k; m/ � 1; 0

i
(10.28)

where ˛ controls the trade-off between noise reduction and transient distortion [9,

14], O�.`; k; m/ is an estimate of �.`; k; m/ , E
hˇ̌D.`; k; m/

ˇ̌2i
, and the a posteriori

SNR estimate is obtained by

O�.`; k; m/ D jX .`; k; m/j2
O�.`; k; m/

: (10.29)

Note that limiting the minimum value of the a priori SNR has a considerable effect
on the nature of the residual noise [9, 14], providing a trade-off between musical
and white noise distortions. For this reason, a lower bound �min is typically used to
prevent a priori SNR estimates falling below a prescribed value, i.e.,

O�.`; k; m/ D max
h O�.`; k; m/; �min

i
: (10.30)

Modulation noise power spectral estimates are needed. For this, a simple
procedure is employed, where an initial estimate of modulation power spectrum of
noise is computed from six leading silence frames. This estimate is then updated
during speech absence using a recursive averaging rule [51, 63], applied in the
modulation spectral domain as follows

O�.`; k; m/ D ' O�.` � 1; k; m/ C .1 � '/ jX .`; k; m/j2 (10.31)

where ' is a forgetting factor chosen depending on the stationarity of the noise.
The speech presence or absence is determined using a statistical model-based voice
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activity detection (VAD) algorithm (the decision-directed decision rule without
hang-over) by Sohn et al. [58], applied in the modulation spectral domain.

In Ephraim and Malah’s classical paper on acoustic magnitude estimation
(AME), authors also proposed an AME formulation under the uncertainty of speech
presence [14]. Here, the quality of enhanced speech was shown to be further
improved (compared to that generated by AME alone), without introducing any
additional distortions. In a later paper, they went on to show that applying AME to
the log-magnitude spectrum [15], which is more suited to speech processing [18],
also results in improved enhanced speech quality. Motivated by these observations,
we also investigated the effect of applying speech presence uncertainty (SPU) and
log-magnitude spectral processing to the MME formulation.

10.2.3.1 MMSE Modulation Magnitude Estimation with SPU

Using SPU, the optimal estimate of the modulation magnitude spectrum is given by
the relation

ˇ̌ OS.`; k; m/
ˇ̌ D �.`; k; m/G.`; k; m/

ˇ̌X .`; k; m/
ˇ̌
; (10.32)

where G.`; k; m/ is the MME spectral gain function given by Eq. (10.23), and
�.`; k; m/ is given by

�.`; k; m/ D �.`; k; m/

1 C �.`; k; m/
; (10.33)

with

�.`; k; m/ D .1 � qm/

qm

:
exp .�.`; k; m//

1 C O�.`; k; m/
; (10.34)

and �.`; k; m/ given by Eq. (10.24). Here qm is the probability of signal presence
in the mth spectral component, and is a tunable parameter. Applying

ˇ̌ OS.`; k; m/
ˇ̌

of Eq. (10.32) in the modulation AMS framework produced stimuli denoted type
MME+SPU [42].

10.2.3.2 MMSE Log-Modulation Magnitude Estimation

Minimising the mean-squared error of the log-modulation magnitude spectrum, the
optimal estimate of the modulation magnitude spectrum is given by the relation

ˇ̌ OS.`; k; m/
ˇ̌ D G .`; k; m/

ˇ̌X .`; k; m/
ˇ̌
; (10.35)
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Table 10.2 Parameter values applied to MMSE modulation
magnitude estimation based methods

MME MME+SPU LogMME

AFD 32 ms 32 ms 32 ms

AFS 1 ms 1 ms 1 ms

MFD 32 ms 32 ms 32 ms

MFS 2 ms 2 ms 2 ms

qm – 0.3 –

�min �25 dB �25 dB �25 dB

Smoothing parameter (˛) 0.998 0.995 0.996

where G .`; k; m/ is the spectral gain function given by

G .`; k; m/ D �.`; k; m/exp
�1

2
Ei
�
�.`; k; m/

�	
; (10.36)

Ei
��� is the exponential integral, and �.`; k; m/ (a function of a priori and a posteriori

SNRs) is given by Eq. (10.24). Stimuli of type LogMME [42] are then constructed
by applying

ˇ̌ OS.`; k; m/
ˇ̌

given by Eq. (10.35) in the modulation AMS framework.

10.2.3.3 MME Parameters

Key parameters of MME, MME+SPU and LogMME were each determined subjec-
tively via listening tests (see [42] for further details). Parameters found to work best
are shown in Table 10.2.

10.3 Speech Quality Assessment

Enhancement methods such as those discussed in this chapter aim to improve the
quality of speech degraded by additive noise distortion. To evaluate the effectiveness
of different methods in achieving this objective, enhanced stimuli are typically
evaluated by human listeners in subjective listing tests. A number of methodologies
for conducting these tests can be used, and are generally classified as either ratings
based, or preference based. For a detailed review of subjective testing methods, the
interested reader is referred to [34, Chap. 10]. Evaluations of quality discussed in
this chapter make use of AB listening tests to determine the preference of listeners.
These tests play stimuli pairs, in randomised order, and listeners are asked to select
their preference. Pair-wise scoring is then used to calculate a preference score for
each treatment type (a detailed description of the procedure can be found in [42,44]).

However, subjective experiments are heavily dependent on the reliability and
judgements of each listener, and are somewhat time consuming. Therefore objective



10 Modulation Processing for Speech Enhancement 333

metrics, which compare enhanced and clean stimuli via some measure, are popular
as a quick indicator of enhanced stimuli quality. There is an extensive number of
metrics for this purpose available, each giving an indication of some aspects of
speech quality, while neglecting other aspects. Loizou [34] and Quackenbush et
al. [47] may be referenced for a detailed review of many of these. Two popular
measures used to evaluate quality in the literature, and used here, are the PESQ
metric [50] and the Segmental SNR [47].

10.4 Evaluation of Short-Time Modulation-Domain
Based Methods with Respect to Quality

As previously mentioned, spectral subtraction (SpecSub) [8] and the MMSE
acoustic magnitude estimator (AME) [14] are well known acoustic domain methods
for the enhancement of stimuli corrupted with additive noise distortion. SpecSub
is a particularly well known method, featuring effective suppression of background
noise but having the disadvantage of introducing audibly distracting musical noise
artefact to reconstructed stimuli. Addressing the problem of musical noise is the
AME method, which does not introduce musical noise distortion (for appropriately
selected a priori SNR estimation smoothing parameter). While the noise suppression
of AME is not as effective as SpecSub, the absence of musical noise in reconstructed
stimuli makes it preferred over SpecSub for the enhancement of speech.

Initial evaluation of the effectiveness of short-time modulation-domain pro-
cessing therefore compared the quality of stimuli processed using AME, with
that processed using modulation spectral subtraction (ModSSub) and MMSE
modulation-magnitude estimation (MME) methods. Results of the subjective com-
parison (in the form of AB human listening tests) of the quality of processed stimuli
are shown in Fig. 10.2. From these results we see that both ModSSub and MME
improve on AME, suggesting that processing in the short-time modulation domain
results in improved processed stimuli quality.

Noisy stimuli processed using ModSSub is noted to have improved noise
suppression, as featured by SpecSub, but without significant introduction of musical
noise. This improved noise suppression makes it preferred over AME by listeners.
Since the effect of noise on speech is dependent on the frequency, and the SNR
of noisy speech varies across the acoustic spectrum [25], it is reasonable to expect
that the ModSSub method will also attain better performance for coloured noises
than the acoustic spectral subtraction and AME methods. This is because one of the
strengths of the method is that each subband is processed independently and thus
it is the time trajectories in each subband that are important, and not the relative
levels in-between bands at a given time instant. It is also for this reason that the
modulation spectral subtraction method avoids much of the musical noise problem
associated with acoustic spectral subtraction. However, as we have previously
noted, the ModSSub method requires longer frame durations for modulation domain
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Fig. 10.2 Speech enhancement results for the subjective experiment comparing the quality of
enhanced stimuli. The results are in terms of mean subjective preference scores (%) with standard
error bars for (a) clean; (b) noisy (degraded at 5 dB Additive white Gaussian noise (AWGN)); and
stimuli generated using the following treatment types: (c) AME [14]; (d) ModSSub [44]; and (e)
MME [42]
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Fig. 10.3 Results of an objective quality experiment for AWGN (left) and babble (right) noise
types. The results are in terms of mean PESQ scores as a function of input SNR (dB). Mean scores
are shown for (a) noisy; and stimuli generated using the following treatment types: (b) SpecSub [8];
(c) AME [14]; and (d) ModSSub [44]

processing. This also means that longer non-speech durations are required to update
noise estimates, and may result in the method being less adaptive to rapidly changing
noise conditions. A comparison of performance of ModSSub for Additive white
Gaussian noise (AWGN) and babble noise types, in terms of mean Perceptual
evaluation of speech quality (PESQ, [50]) scores, are shown in Fig. 10.3. ModSSub
scores higher than AME and SpecSub for both noise types. The lower scores of
SpecSub, particularly at low input SNRs, again indicates that use of the modulation
domain for spectral subtraction provides a considerable improvement for both
stationary and non-stationary noise types.

However, as previously mentioned, in the ModSSub method, the MFD was found
to be an important parameter, providing a trade-off between musical noise distortion
and spectral smearing distortion types. MME, on the other hand, utilises MMSE
magnitude estimation in the short-time modulation domain, an approach which
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Fig. 10.4 Mean subjective preference scores (%) with standard error bars for (a) clean; (b) noisy
(degraded at 5 dB Additive white Gaussian noise (AWGN)); and stimuli generated using the
following treatment types: (c) MME [42]; (d) MME+SPU [42]; and (e) LogMME [42]

is not susceptible to musical noise in the same way that spectral subtraction is.
Therefore much shorter MFDs could be used, overcoming the problem of spectral
smearing. The result was a considerable quality improvement, as indicated by
the much higher preference for MME stimuli in Fig. 10.2. As observed in the
acoustic domain, while the noise suppression for MME was not quite as effective
as for ModSSub, the greatly improved residual noise made it preferred by listeners.
Comparing the sound of ModSSub and MME stimuli, ModSSub stimuli have less
audible background noise, but there is spectral smearing heard as a type of slurring,
and some low level musical-type noise. MME does not have these musical noise
artefacts, while having improved removal of background noise compared to AME.

The important parameter of MME, like for AME, is the smoothing parameter
for the decision-directed a priori SNR estimation. A relatively high smoothing
parameter is required for MME, resulting in reducing adaptability to rapidly
changing noise characteristics, and some smoothing, heard as a loss of crispness
in speech.

Just as in the acoustic domain, MMSE magnitude estimation was improved
with the use of speech presence uncertainly, or log-domain processing, so too was
there improvement in the modulation domain. This can be seen in the results of
subjective experiments shown in Fig. 10.4 comparing the quality of MME, to that
of MME with speech presence uncertainty (MME+SPU) and modulation MMSE
log-magnitude estimation (LogMME). Here we see that MME+SPU was generally
preferred by listeners over MME and LogMME stimuli types. It is noted that the
difference between the MME, LogMME and MME+SPU stimuli types is relatively
small compared to that observed in the acoustic domain, and mainly heard as
an improvement in background noise attenuation. It was also observed that the
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Fig. 10.5 Mean subjective preference scores (%) with standard error bars for (a) clean; (b)
noisy (degraded at 5 dB Additive white Gaussian noise (AWGN)); and stimuli generated using
the following treatment types: (c) MME+SPU [42]; (d) AME [14]; (e) AME+SPU [14]; and (f)
LogAME [15]

improvement in speech quality due to the use of SPU was more noticeable in some
stimuli than in others. For less-stationary noise types, MME+SPU and LogMME
were found to be quite similar in quality, again offering a small improvement
over MME.

To complete the comparison to acoustic domain MMSE magnitude estima-
tion, a subjective comparison of stimuli quality of AME variations (including
AME [14], AME+SPU [14], and LogAME [15]) to the MME+SPU method
is shown in Fig. 10.5. As expected, AME+SPU was the most preferred of the
acoustic AME-based methods, though scores for LogAME also indicate improved
quality compared to AME. Comparing with MME+SPU, MME+SPU provided
improved removal of noise compared to all AME-based methods, resulting in higher
preference by listeners. Otherwise, the nature of residual noise is quite similar and
colourless.

As mentioned in the introduction, speech enhancement methods can generally
be classified as either spectral subtraction, statistical (MMSE), Wiener filtering,
Kalman filtering, or subspace based methods. In this chapter, we have evaluated
the performance of both spectral subtraction and MMSE magnitude estimation in
the modulation domain. To complete an evaluation of these methods, we compare
the quality of stimuli processed using these methods, with that enhanced using
Wiener filtering and Kalman filtering in the modulation domain. Wiener filtering
has recently been investigated in the short-time modulation domain (ModWiener)
utilizing a non-iterative Wiener filtering approach based on the a priori approach
of Scalart and Filho [51]. Modulation-domain Kalman filtering (ModKalman) has
also been investigated in So and Paliwal [57]. There, a coloured-noise Kalman
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Fig. 10.6 Mean subjective preference scores (%) including standard error bars for (a) clean;
(b) noisy (degraded at 5 dB AWGN); and stimuli generated using the following treatment types:
(c) MME+SPU [42]; (d) ModSSub [44]; (e) ModWiener [42]; and (f) ModKalman [57]

filtering approach was applied to each temporal trajectory, with AME enhanced
speech used to estimate the initial LPCs.

The resulting mean preference scores for the subjective comparison and AWGN
are shown in Fig. 10.6. Of the modulation-domain based approaches, MME+SPU
was clearly preferred by listeners over other treatment types, and ModKalman
was the next most preferred. It is noted that some listeners recorded a similar
preference for ModSSub and ModKalman, while others preferred ModKalman over
ModSSub. The good performance of the MME+SPU and ModKalman methods is
partly attributed to their use of small MFDs, which is consistent with the findings
reported in [41]. ModWiener was the least preferred of the investigated enhancement
methods.

Subjective experiments for stimuli corrupted with a range of coloured noise types
were also conducted. Results of a subjective experiment utilising babble noise is
shown in Fig. 10.7, and show consistent results to those observed for AWGN.

The preferences shown in Figs. 10.6 and 10.7 are well explained by looking at
the spectrograms of each stimuli type. Spectrograms of the utterance, “The sky that
morning was clear and bright blue”, by a male speaker are shown in Fig. 10.8.
For type MME+SPU stimuli (shown in Fig. 10.8c), we can see there is good
background noise removal, less residual noise, no musical-type noise, and no visible
spectral smearing. ModKalman stimuli (Fig. 10.8f) also have good background
noise removal and no visible spectral smearing, but has clear dark spots throughout
the background heard as a musical type noise. ModSSub stimuli (Fig. 10.8d), on
the other hand, have less musical type noise than ModKalman but also contains
spectral smearing due to the use of longer frame durations, causing distortion
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Fig. 10.7 Mean subjective preference scores (%) for (a) clean; (b) noisy (degraded with babble
noise at 5 dB); and stimuli generated using the following treatment types: (c) MME+SPU [42];
(d) ModSSub [44]; (e) ModWiener [42]; and (f) ModKalman [57]

in the processed speech. ModWiener, which was the least effective method, had
considerable distortion in the stimuli, seen as darkness in the background of its
spectrogram (Fig. 10.8e). The poor performance of ModWiener was in part due to
difficulty tuning, where parameters working better for one stimuli was considerably
different for another.

Objective evaluations of the quality of stimuli enhanced using each of the
modulation domain methods were also conducted. Here, all 30 stimuli from the
Noizeus corpus, corrupted with the indicated noise type at each input SNR level,
were enhanced using each of the modulation domain based enhancement methods.
Quality for each stimuli, compared to clean, were evaluated using segmental SNR
and PESQ measures. Mean scores were calculated for each treatment type, noise
type, and input SNR. Figure 10.9 shows mean segmental SNRs for (a) AWGN and
(b) babble noise types. Similarly, Fig. 10.10 shows mean PESQ scores.

The segmental SNRs are demonstrated to have the highest correlation with
subjective results, with MME+SPU generally scoring higher than other methods.
While for stimuli corrupted with white noise, objective scores for MME+SPU,
ModSSub and ModKalman were quite close, there was a bigger difference in scores
when considering coloured noise stimuli. Here, MME+SPU scored somewhat
higher than other methods. For babble noise, ModSSub and ModKalman were very
close with ModSSub scoring a little higher, but it is noted that for some other
noise types such as street noise, ModKalman scored higher than ModSSub. Overall,
segmental SNRs are consistent with the findings of the coloured noise subjective
experiments.

PESQ scores are found to show less consistency with subjective results. Here,
MME+SPU scores higher at high SNRs, but ModSSub scores higher at lower SNRs
(including 5 dB, the input SNR used for subjective tests). Results indicate that the
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Fig. 10.8 Spectrograms of an utterance, “The sky that morning was clear and bright blue”,
by a male speaker from the Noizeus speech corpus: (a) clean speech; (b) speech degraded by
AWGN at 5 dB SNR; and noisy speech enhanced using: (c) MME+SPU [42]; (d) ModSSub [44];
(e) ModWiener [42]; and (f) ModKalman [57]
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Fig. 10.9 Mean segmental
SNR (dB) for: (1) noisy; and
stimuli generated by
processing noisy stimuli with
the following treatment types:
(2) MME+SPU [42];
(3) ModSSub [44];
(4) ModWiener [42]; and
(5) ModKalman [57]. Plot
(a) shows results for stimuli
degraded with AWGN; and
(b) for stimuli degraded with
Babble noise
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PESQ metric favours the more suppressed background noise of the ModSSub,
and does not penalise the musical noise distortion present in ModSSub (and
ModKalman) stimuli in the same way that human listeners typically do.

10.5 Conclusion

In this chapter, a review of speech enhancement methods which process the short-
time modulation domain has been presented. These methods have utilised a short-
time Fourier modulation AMS framework to modify the short-time modulation
spectrum in order to improve the quality of speech degraded by additive noise
distortion. This approach addresses limitations in previous modulation domain
enhancement methods which predominantly applied filters designed from the long-
term properties of the speech modulation spectrum, and ignoring the nonstationary
properties of speech and noise.

Using the modulation AMS framework, noise was suppressed using a number
of speech enhancement algorithms, including spectral subtraction ModSSub and
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Fig. 10.10 Mean PESQ
scores for: (1) noisy; and
stimuli generated by
processing noisy stimuli with
the following treatment types:
(2) MME+SPU [42]; (3)
ModSSub [44]; (4)
ModWiener [42]; and (5)
ModKalman [57]. Plot (a)
shows results for stimuli
degraded with AWGN; and
(b) for stimuli degraded with
Babble noise
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MMSE magnitude estimation (MME). ModSSub was found to improve the quality
of processed stimuli in comparison to acoustic spectral subtraction and AME.
ModSSub stimuli were found to have effective noise suppression (like spectral
subtraction), but with considerably reduced introduction of musical noise for
appropriately selected MFD. Thus, the MFD was an important parameter of the
method, providing a trade-off between musical noise distortion (for shorter MFD)
and the introduction of spectral smearing (for larger MFD), with longer MFD of
around 256 ms providing the best compromise. This use of larger MFD also resulted
in the need for longer silence regions for noise estimation and updates, making this
approach less adaptive to changing noise conditions.

MMSE magnitude estimation in the modulation domain (MME) addressed this
problem, resulting in further improvements in stimuli quality. As MMSE magnitude
estimation does not introduce musical noise (for appropriately selected decision-
directed smoothing parameter), a short MFD of 32 ms could be used. The result
was stimuli which still improved background noise suppression compared to AME
(though less effective than ModSSub), but without the introduction of spectral
smearing observed in ModSSub, nor the musical noise of spectral subtraction and
modulation domain Kalman filtering methods. However, MME also required a large
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decision-directed a priori SNR estimation smoothing parameter, which results in
slower updates of the noise estimate to changing noise properties, resulting in a
smoothing of the spectrum, heard as a loss of crispness in speech. Some further
improvement in quality was shown to be achievable through use of log-domain
processing (LogMME) and particularly MME in the presence of speech uncertainty
(MME+SPU). Common to both MME-based methods and ModSSub is the disad-
vantage of their additional computational complexity, but also the advantage when
processing less stationary noise types in that subbands are processed independently.
Comparisons of various modulation domain based methods, including modulation
domain based Wiener filtering and Modulation domain Kalman filtering, indicated
MME+SPU processed stimuli to be preferred over stimuli processed using other
modulation domain based methods.

As a final comment, we note that here we have considered only the effect of mod-
ulation processing on speech quality. Results indicate that there is no improvement
in intelligibility, and that for improved intelligibility the RI-modulation domain is
more beneficial [53].

References

1. J. Allen, L. Rabiner, A unified approach to short-time Fourier analysis and synthesis. Proc.
IEEE 65(11), 1558–1564 (1977)

2. T. Arai, M. Pavel, H. Hermansky, C. Avendano, Intelligibility of speech with filtered time
trajectories of spectral envelopes, in Proceedings of International Conference on Spoken
Language Processing (ICSLP), Philadelphia, PA, Oct 1996, pp. 2490–2493

3. L. Atlas, Modulation spectral transforms: application to speech separation and modification.
Tech. Rep. 155. IEICE, University of Washington, Washington, WA (2003)

4. L. Atlas, S. Shamma, Joint acoustic and modulation frequency. EURASIP J. Appl. Signal
Process. 2003(7), 668–675 (2003)

5. L. Atlas, M. Vinton, Modulation frequency and efficient audio coding, in Proceedings of the
SPIE The International Society for Optical Engineering, vol. 4474 (2001), pp. 1–8

6. S. Bacon, D. Grantham, Modulation masking: effects of modulation frequency, depth, and
phase. J. Acoust. Soc. Am. 85(6), 2575–2580 (1989)

7. M. Berouti, R. Schwartz, J. Makhoul, Enhancement of speech corrupted by acoustic noise, in
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 4., Washington, DC, Apr 1979, pp. 208–211

8. S. Boll, Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust.
Speech Signal Process. 27(2), 113–120 (1979)

9. O. Cappe, Elimination of the musical noise phenomenon with the Ephraim and Malah noise
suppressor. IEEE Trans. Speech Audio Process. 2(2), 345–349 (1994)

10. I. Cohen, Relaxed statistical model for speech enhancement and a priori SNR estimation. IEEE
Trans. Speech Audio Process. 13(5), 870–881 (2005)

11. D. Depireux, J. Simon, D. Klein, S. Shamma, Spectrotemporal response field characterization
with dynamic ripples in ferrect primary auditory cortex. J. Neurophysiol. 85(3), 1220–1234
(2001)

12. R. Drullman, J. Festen, R. Plomp, Effect of reducing slow temporal modulations on speech
reception. J. Acoust. Soc. Am. 95(5), 2670–2680 (1994)

13. R. Drullman, J. Festen, R. Plomp, Effect of temporal envelope smearing on speech reception.
J. Acoust. Soc. Am. 95(2), 1053–1064 (1994)



10 Modulation Processing for Speech Enhancement 343

14. Y. Ephraim, D. Malah, Speech enhancement using a minimum-mean square error short-time
spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Process. 32(6), 1109–1121
(1984)

15. Y. Ephraim, D. Malah, Speech enhancement using a minimum mean-square error log-spectral
amplitude estimator. IEEE Trans. Acoust. Speech Signal Process. 33(2), 443–445 (1985)

16. T. Falk, S. Stadler, W.B. Kleijn, W.-Y. Chan, Noise suppression based on extending a speech-
dominated modulation band, in Proceedings of the ISCA Conference of the International
Speech Communication Association (INTERSPEECH), Antwerp, Aug 2007, pp. 970–973

17. R. Goldsworthy, J. Greenberg, Analysis of speech-based speech transmission index methods
with implications for nonlinear operations. J. Acoust. Soc. Am. 116(6), 3679–3689 (2004)

18. R. Gray, A. Buzo, A. Gray, Y. Matsuyama, Distortion measures for speech processing. IEEE
Trans. Acoust. Speech Signal Process. 28(4), 367–376 (1980)

19. S. Greenberg, T. Arai, The relation between speech intelligibility and the complex modulation
spectrum, in Proceedings of the ISCA European Conference on Speech Communication and
Technology (EUROSPEECH), Aalborg, Sept 2001, pp. 473–476

20. D. Griffin, J. Lim, Signal estimation from modified short-time Fourier transform. IEEE Trans.
Acoust. Speech Signal Process. 32(2), 236–243 (1984)

21. H. Hermansky, N. Morgan, RASTA processing of speech. IEEE Trans. Speech Audio Process.
2, 578–589 (1994)

22. H. Hermansky, E. Wan, C. Avendano, Speech enhancement based on temporal processing, in
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 1, Detroit, MI, May 1995, pp. 405–408

23. T. Houtgast, H. Steeneken, A review of the MTF concept in room acoustics and its use for
estimating speech intelligibility in auditoria. J. Acoust. Soc. Am. 77(3), 1069–1077 (1985)

24. X. Huang, A. Acero, H. Hon, Spoken Language Processing: A Guide to Theory, Algorithm,
and System Development (Prentice Hall, Upper Saddle River, 2001)

25. S. Kamath, P. Loizou, A multi-band spectral subtraction method for enhancing speech
corrupted by colored noise, in Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) (2002)

26. N. Kanedera, T. Arai, H. Hermansky, M. Pavel, On the relative importance of various
components of the modulation spectrum for automatic speech recognition. Speech Commun.
28(1), 43–55 (1999)

27. D. Kim, A cue for objective speech quality estimation in temporal envelope representations.
IEEE Signal Process. Lett. 11(10), 849–852 (2004)

28. D. Kim, Anique: an auditory model for single-ended speech quality estimation. IEEE Trans.
Speech Audio Process. 13(5), 821–831 (2005)

29. B. Kingsbury, N. Morgan, S. Greenberg, Robust speech recognition using the modulation
spectrogram. Speech Commun. 25(1–3), 117–132 (1998)

30. T. Kinnunen, Joint acoustic-modulation frequency for speaker recognition, in Proceedings of
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1.
Toulouse, May 2006, pp. 665–668

31. T. Kinnunen, K. Lee, H. Li, Dimension reduction of the modulation spectrogram for
speaker verification, in Proceedings of ISCA Speaker and Language Recognition Workshop
(ODYSSEY), Stellenbosch, Jan 2008

32. N. Kowalski, D. Depireux, S. Shamma, Analysis of dynamic spectra in ferret primary auditory
cortex: I. Characteristics of single unit responses to moving ripple spectra. J. Neurophysiol.
76(5), 3503–3523 (1996)

33. J. Lim, A. Oppenheim, Enhancement and bandwidth compression of noisy speech. Proc. IEEE
67(12), 1586–1604 (1979)

34. P. Loizou, Speech Enhancement: Theory and Practice (Taylor and Francis, Boca Raton, 2007)
35. X. Lu, S. Matsuda, M. Unoki, S. Nakamura, Temporal contrast normalization and edge-

preserved smoothing of temporal modulation structures of speech for robust speech recog-
nition. Speech Commun. 52(1), 1–11 (2010)



344 K. Paliwal and B. Schwerin

36. J. Lyons, K. Paliwal, Effect of compressing the dynamic range of the power spectrum in
modulation filtering based speech enhancement, in Proceedings of ISCA Conference of the
International Speech Communication Association (INTERSPEECH), Brisbane, Sep 2008, pp.
387–390

37. N. Malayath, H. Hermansky, S. Kajarekar, B. Yegnanarayana, Data-driven temporal filters and
alternatives to GMM in speaker verification. Digit. Signal Proces. 10(1–3), 55–74 (2000)

38. R. McAulay, M. Malpass, Speech enhancement using a soft-decision noise suppression filter.
IEEE Trans. Acoust. Speech Signal Process. 28(2), 137–145 (1980)

39. N. Mesgarani, S. Shamma, Speech enhancement based on filtering the spectrotemporal
modulations, in Proceedings of IEEE International Conference Acoustics Speech and Signal
Processing (ICASSP), vol. 1, Philadelphia, PA, Mar 2005, pp. 1105–1108

40. C. Nadeu, P. Pachés-Leal, B.-H. Juang, Filtering the time sequences of spectral parameters for
speech recognition. Speech Commun. 22(4), 315–332 (1997)

41. K. Paliwal, B. Schwerin, K. Wójcicki, Role of modulation magnitude and phase spectrum
towards speech intelligibility. Speech Commun. 53(3), 327–339 (2011)

42. K. Paliwal, B. Schwerin, K. Wójcicki, Speech enhancement using minimum mean-square error
short-time spectral modulation magnitude estimator. Speech Commun. 54(2), 282–305 (2012)

43. K. Paliwal, K. Wójcicki, Effect of analysis window duration on speech intelligibility. IEEE
Signal Process. Lett. 15, 785–788 (2008)

44. K. Paliwal, K. Wójcicki, B. Schwerin, Single-channel speech enhancement using spectral
subtraction in the short-time modulation domain. Speech Commun. 52(5), 450–475 (2010)

45. K. Payton, L. Braida, A method to determine the speech transmission index from speech
waveforms. J. Acoust. Soc. Am. 106(6), 3637–3648 (1999)

46. J. Picone, Signal modeling techniques in speech recognition. Proc. IEEE 81(9), 1215–1247
(1993)

47. S. Quackenbush, T. Barnwell, M. Clements, Objective Measures of Speech Quality (Prentice
Hall, Englewood Cliffs, 1988)

48. T. Quatieri, Discrete-Time Speech Signal Processing: Principles and Practice (Prentice Hall,
Upper Saddle River, 2002)

49. L. Rabiner, R. Schafer, Theory and Applications of Digital Speech Processing (Pearson Higher
Education, Upper Saddle River, 2011)

50. A. Rix, J. Beerends, M. Hollier, A. Hekstra, Perceptual Evaluation of Speech Quality (PESQ),
an objective method for end-to-end speech quality assessment of narrowband telephone
networks and speech codecs. ITU-T Recommendation P.862 (2001)

51. P. Scalart, J. Filho, Speech enhancement based on a priori signal to noise estimation, in
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Process
(ICASSP), vol. 2. Atlanta, GA, May 1996, pp. 629–632

52. C. Schreiner, J. Urbas, Representation of amplitude modulation in the auditory cortex of the
cat: I. The anterior auditory field (AAF). Hear. Res. 21(3), 227–241 (1986)

53. B. Schwerin, K. Paliwal, Using STFT real and imaginary parts of modulation signals for
MMSE-based speech enhancement. Speech Commun. 58, 49–68 (2014)

54. S. Shamma, Auditory cortical representation of complex acoustic spectra as inferred from the
ripple analysis method. Netw. Comput. Neural Syst. 7(3), 439–476 (1996)

55. B. Shannon, K. Paliwal, Role of phase estimation in speech enhancement, in Proceedings of
International Conference on Spoken Language Processing (ICSLP), Pittsburgh, PA, Sep 2006,
pp. 1423–1426

56. S. Sheft, W. Yost, Temporal integration in amplitude modulation detection. J. Acoust. Soc. Am.
88(2), 796–805 (1990)

57. S. So, K. Paliwal, Modulation-domain Kalman filtering for single-channel speech enhance-
ment. Speech Commun. 53(6), 818–829 (2011)

58. J. Sohn, N.S. Kim, W. Sung, A statistical model-based voice activity detection. IEEE Signal
Process. Lett. 6(1), 1–3 (1999)

59. H. Steeneken, T. Houtgast, A physical method for measuring speech-transmission quality. J.
Acoust. Soc. Am. 67(1), 318–326 (1980)



10 Modulation Processing for Speech Enhancement 345

60. J. Thompson, L. Atlas, A non-uniform modulation transform for audio coding with increased
time resolution, in Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Process (ICASSP), vol. 5, Hong Kong, Apr 2003, pp. 397–400

61. V. Tyagi, I. McCowan, H. Misra, H. Bourland, Mel-cepstrum modulation spectrum (MCMS)
features for robust ASR, in Proceedings of IEEE Workshop Automatic Speech Recognition and
Understanding (ASRU), St. Thomas, VI, Dec 2003

62. P. Vary, R. Martin, Digital Speech Transmission: Enhancement, Coding and Error Conceal-
ment (Wiley, West Sussex, 2006)

63. N. Virag, Single channel speech enhancement based on masking properties of the human
auditory system. IEEE Trans. Speech Audio Process. 7(2), 126–137 (1999)

64. S.V. Vuuren, H. Hermanshy, On the importance of components of the modulation spectrum
for speaker verification, in Proceedings of International Conference on Spoken Language
Processing (ICSLP), vol. 7, Sydney, Nov 1998, pp. 3205–3208

65. D. Wang, J. Lim, The unimportance of phase in speech enhancement. IEEE Trans. Acoust.
Speech Signal Process. 30(4), 679–681 (1982)

66. X. Xiao, E. Chng, H. Li, Normalization of the speech modulation spectra for robust speech
recognition, in Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Process (ICASSP), vol. 4, Monolulu, HI, Apr 2007, pp. 1021–1024


	Preface
	Contents
	Part I Overview of Speech and Audio Coding
	1 From “Harmonic Telegraph” to Cellular Phones
	1.1 Introduction
	1.1.1 The Multiple Telegraph “Harmonic Telegraph”
	1.1.2 Bell's Theory of Transmitting Speech

	1.2 Early History of the Telephone
	1.2.1 The Telephone Is Born
	1.2.2 Birth of the Telephone Company
	1.2.2.1 Research at Bell Company
	1.2.2.2 New York to San Francisco Telephone Service in 1915, Nobel Prize, and More


	1.3 Speech Bandwidth Compression at AT&T
	1.3.1 Early Research on “vocoders”
	1.3.2 Predictive Coding
	1.3.3 Efficient Encoding of Prediction Error
	1.3.3.1 Some Comments on the Nature of Prediction Error for Speech
	1.3.3.2 Information Rate of Gaussian Signals with Specified Fidelity Criterion
	1.3.3.3 Predictive Coding with Specified Error Spectrum
	1.3.3.4 Overcoming the Computational Complexity of Predictive Coders


	1.4 Cellular Telephone Service
	1.4.1 Digital Cellular Standards
	1.4.1.1 North American Digital Cellular Standards
	1.4.1.2 European Digital Cellular Standards


	1.5 The Future
	References

	2 Challenges in Speech Coding Research
	2.1 Introduction
	2.2 Speech Coding
	2.2.1 Speech Coding Methods
	2.2.1.1 Waveform Coding [2]
	2.2.1.2 Subband and Transform Methods [2]
	2.2.1.3 Analysis-by-Synthesis Methods [2, 10]
	2.2.1.4 Postfiltering [11]
	2.2.1.5 Voice Activity Detection and Silence Coding

	2.2.2 Speech Coding Standards
	2.2.2.1 ITU-T Standards
	2.2.2.2 Digital Cellular Standards
	2.2.2.3 VoIP Standards


	2.3 Audio Coding [25, 26]
	2.4 Newer Standards
	2.5 Emerging Topics
	2.6 Conclusions and Future Research Directions
	References

	3 Scalable and Multi-Rate Speech Coding for Voice-over-Internet Protocol (VoIP) Networks
	3.1 Introduction
	3.2 VoIP Networks
	3.2.1 Overview of VoIP Networks
	3.2.2 Robust Voice Communication
	3.2.3 Packet Loss Concealment (PLC)

	3.3 Analysis-by-Synthesis Speech Coding
	3.3.1 Analysis-by-Synthesis Principles
	3.3.2 CELP-Based Coders
	3.3.2.1 Perceptual Error Weighting
	3.3.2.2 Pitch Estimation


	3.4 Multi-Rate Speech Coding
	3.4.1 Basic Principles
	3.4.2 Adaptive Multi-Rate (AMR) Codec

	3.5 Scalable Speech Coding
	3.5.1 Basic Principles
	3.5.2 Standardized Scalable Speech Codecs
	3.5.2.1 ITU-T G.729.1
	3.5.2.2 ITU-T G.718


	3.6 Packet-Loss Robust Speech Coding
	3.6.1 Internet Low Bitrate Codec (iLBC)
	3.6.2 Scalable Multi-Rate Speech Codec
	3.6.2.1 Narrowband Codec
	3.6.2.2 Wideband Codec


	3.7 Conclusions
	References

	4 Recent Speech Coding Technologies and Standards
	4.1 Recent Speech Codec Technologies and Features
	4.1.1 Active Speech Source-Controlled Variable Bit Rate, Constant Bit Rate Operation and Voice Activity Detectors
	4.1.1.1 Source-Controlled Variable Bit Rate (SC-VBR) Versus Constant/Fixed Bit Rate (CBR) Vocoders

	4.1.2 Layered Coding
	4.1.3 Bandwidth Extension of Speech
	4.1.3.1 Harmonic Bandwidth Extension Architecture
	4.1.3.2 Spectral Band Replication (SBR)

	4.1.4 Blind Bandwidth Extension
	4.1.4.1 High Band Model and Prediction Methods
	4.1.4.2 BBE for Speech Coding
	4.1.4.3 BBE for Bandwidth Increase
	4.1.4.4 Quality Evaluation
	4.1.4.5 Encoder Based BBE

	4.1.5 Packet Loss Concealment
	4.1.5.1 Code Excited Linear Prediction Coders
	4.1.5.2 Adaptive Differential Pulse Code Modulation (ADPCM) Based Coders

	4.1.6 Voice Over Internet Protocol (VoIP)
	4.1.6.1 Management of Time Varying Delay
	4.1.6.2 Packet Loss Concealment for VoIP


	4.2 Recent Speech Coding Standards
	4.2.1 Advanced Standards in ITU-T
	4.2.1.1 G.729.1: Scalable Extension of G.729
	4.2.1.2 G.718: Layered Coder with Interoperable Modes
	4.2.1.3 Super-Wideband Extensions: G.729.1 Annex E and G.718 Annex B
	4.2.1.4 G.711.1: Scalable Wideband Extension of G.711
	4.2.1.5 Super-Wideband and Stereo Extensions of G.711.1 and G.722
	4.2.1.6 Full-Band Coding in G.719
	4.2.1.7 G.711.0 Lossless Coding
	4.2.1.8 Packet Loss Concealment Algorithms for G.711 and G.722

	4.2.2 IETF Codecs and Transport Protocols
	4.2.2.1 Opus Codec
	Audio Bandwidths and Bit Rate Sweet Spots
	Variable and Constant Bit Rate Modes of Operation
	Mono and Stereo Coding
	Packet Loss Resilience
	Forward Error Correction (Low Bit Rate Redundancy)

	4.2.2.2 RTP Payload Formats

	4.2.3 3GPP and the Enhanced Voice Services (EVS) Codec
	4.2.4 Recent Codec Development in 3GPP2
	4.2.5 Conversational Codecs in MPEG

	References


	Part II Review and Challenges in Speech, Speaker and Emotion Recognition
	5 Ensemble Learning Approaches in Speech Recognition
	5.1 Introduction
	5.2 Background of Ensemble Methods in Machine Learning
	5.2.1 Ensemble Learning
	5.2.2 Boosting
	5.2.3 Bagging
	5.2.4 Random Forest
	5.2.5 Classifier Combination
	5.2.6 Ensemble Error Analyses
	5.2.6.1 Added Error of an Ensemble Classifier
	5.2.6.2 Bias–Variance–Covariance Decomposition
	5.2.6.3 Error-Ambiguity Decomposition

	5.2.7 Diversity Measures
	5.2.8 Ensemble Pruning
	5.2.9 Ensemble Clustering

	5.3 Background of Speech Recognition
	5.3.1 State-of-the-Art Speech Recognition System Architecture
	5.3.2 Front-End Processing
	5.3.3 Lexicon
	5.3.4 Acoustic Model
	5.3.5 Language Model
	5.3.6 Decoding Search

	5.4 Generating and Combining Diversity in Speech Recognition
	5.4.1 System Places for Generating Diversity
	5.4.1.1 Front End Processing
	5.4.1.2 Acoustic Model
	5.4.1.3 Language Model

	5.4.2 System Levels for Utilizing Diversity
	5.4.2.1 Utterance Level Combination
	5.4.2.2 Word Level Combination
	5.4.2.3 Subword Level Combination
	5.4.2.4 State Level Combination
	5.4.2.5 Feature Level Combination


	5.5 Ensemble Learning Techniques for Acoustic Modeling
	5.5.1 Explicit Diversity Generation
	5.5.1.1 Boosting
	5.5.1.2 Minimum Bayes Risk Leveraging (MBRL)
	5.5.1.3 Directed Decision Trees
	5.5.1.4 Deep Stacking Network

	5.5.2 Implicit Diversity Generation
	5.5.2.1 Multiple Systems and Multiple Models
	5.5.2.2 Random Forest
	5.5.2.3 Data Sampling


	5.6 Ensemble Learning Techniques for Language Modeling
	5.7 Performance Enhancing Mechanism of Ensemble Learning
	5.7.1 Classification Margin
	5.7.2 Diversity
	5.7.3 Bias and Variance

	5.8 Compacting Ensemble Models to Improve Efficiency
	5.8.1 Model Clustering
	5.8.2 Density Matching

	5.9 Conclusion
	References

	6 Deep Dynamic Models for Learning Hidden Representations of Speech Features
	6.1 Introduction
	6.2 Generative Deep-Structured Speech Dynamics: Model Formulation
	6.2.1 Generative Learning in Speech Recognition
	6.2.2 A Hidden Dynamic Model with Nonlinear Observation Equation
	6.2.3 A Linear Hidden Dynamic Model Amenable to Variational EM Training

	6.3 Generative Deep-Structured Speech Dynamics: Model Estimation
	6.3.1 Learning a Hidden Dynamic Model Using the Extended Kalman Filter
	6.3.1.1 E-Step
	6.3.1.2 M-Step

	6.3.2 Learning a Hidden Dynamic Model Using Variational EM
	6.3.2.1 Model Inference and Learning
	6.3.2.2 The GMM Posterior
	6.3.2.3 The HMM Posterior


	6.4 Discriminative Deep Neural Networks Aided by Generative Pre-training
	6.4.1 Restricted Boltzmann Machines
	6.4.2 Stacking Up RBMs to Form a DBN
	6.4.3 Interfacing the DNN with an HMM to Incorporate Sequential Dynamics

	6.5 Recurrent Neural Networks for Discriminative Modeling of Speech Dynamics
	6.5.1 RNNs Expressed in the State-Space Formalism
	6.5.2 The BPTT Learning Algorithm
	6.5.3 The EKF Learning Algorithm

	6.6 Comparing Two Types of Dynamic Models 
	6.6.1 Top-Down Versus Bottom-Up
	6.6.1.1 Top-Down Generative Hidden Dynamic Modeling
	6.6.1.2 Bottom-Up Discriminative Recurrent Neural Networks and the ``Generative'' Counterpart

	6.6.2 Localist Versus Distributed Representations
	6.6.3 Latent Explanatory Variables Versus End-to-End Discriminative Learning
	6.6.4 Parsimonious Versus Massive Parameters
	6.6.5 Comparing Recognition Accuracy of the Two Types of Models

	6.7 Summary and Discussions on Future Directions
	References

	7 Speech Based Emotion Recognition
	7.1 Introduction
	7.1.1 What Are Emotions?
	7.1.2 Emotion Labels
	7.1.3 The Emotion Recognition Task

	7.2 Emotion Classification Systems
	7.2.1 Short-Term Features
	7.2.1.1 Pitch
	7.2.1.2 Loudness/Energy
	7.2.1.3 Spectral Features
	7.2.1.4 Cepstral Features

	7.2.2 High Dimensional Representation
	7.2.2.1 Functional Approach to a High-Dimensional Representation
	7.2.2.2 GMM Supervector Approach to High-Dimensional Representation

	7.2.3 Modelling Emotions
	7.2.3.1 Emotion Models: Linear Support Vector Machines
	7.2.3.2 Emotion Models: Nonlinear Support Vector Machines

	7.2.4 Alternative Emotion Modelling Methodologies
	7.2.4.1 Supra-Frame Level Feature
	7.2.4.2 Dynamic Emotion Models


	7.3 Dealing with Variability
	7.3.1 Phonetic Variability in Emotion Recognition Systems
	7.3.2 Speaker Variability
	7.3.2.1 Speaker Normalisation
	7.3.2.2 Speaker Adaptation


	7.4 Comparing Systems
	7.5 Conclusions
	References

	8 Speaker Diarization: An Emerging Research
	8.1 Overview
	8.2 Signal Processing
	8.2.1 Wiener Filtering
	8.2.2 Acoustic Beamforming

	8.3 Feature Extraction
	8.3.1 Acoustic Features
	8.3.1.1 Short-Term Spectral Features
	8.3.1.2 Prosodic Features

	8.3.2 Sound Source Features
	8.3.3 Feature Normalization Techniques
	8.3.3.1 RASTA Filtering
	8.3.3.2 Cepstral Mean Normalization
	8.3.3.3 Feature Warping


	8.4 Speech Activity Detection
	8.4.1 Energy-Based Speech Detection
	8.4.2 Model Based Speech Detection
	8.4.3 Hybrid Speech Detection
	8.4.4 Multi-Channel Speech Detection

	8.5 Clustering Architecture
	8.5.1 Speaker Modeling
	8.5.1.1 Gaussian Mixture Model
	8.5.1.2 Hidden Markov Model
	8.5.1.3 Total Factor Vector
	8.5.1.4 Other Modeling Approaches

	8.5.2 Distance Measures
	8.5.2.1 Symmetric Kullback-Leibler Distance
	8.5.2.2 Divergence Shape Distance
	8.5.2.3 Arithmetic Harmonic Sphericity
	8.5.2.4 Generalized Likelihood Ratio
	8.5.2.5 Bayesian Information Criterion
	8.5.2.6 Cross Likelihood Ratio
	8.5.2.7 Normalized Cross Likelihood Ratio
	8.5.2.8 Other Distance Measures

	8.5.3 Speaker Segmentation
	8.5.3.1 Silence Detection Based Methods
	8.5.3.2 Metric-Based Segmentation
	8.5.3.3 Hybrid Segmentation
	8.5.3.4 Segmentation Evaluation

	8.5.4 Speaker Clustering
	8.5.4.1 Agglomerative Hierarchical Clustering
	8.5.4.2 Divisive Hierarchical Clustering
	8.5.4.3 Other Approaches
	8.5.4.4 Multiple Systems Combination

	8.5.5 Online Speaker Clustering
	Segmentation.
	Novelty Detection.
	Speaker Modeling.
	8.5.5.1 Speaker Clustering Evaluation


	8.6 Speaker Diarization Evaluation
	8.7 Databases for Speaker Diarization in Meeting
	8.8 Related Projects in Meeting Room
	8.9 NIST Rich Transcription Benchmarks
	8.10 Summary
	References


	Part III Current Trends in Speech Enhancement
	9 Maximum A Posteriori Spectral Estimation with Source Log-Spectral Priors for Multichannel Speech Enhancement
	9.1 Introduction
	9.2 Signal Representation and Modeling for Multichannel Speech Enhancement
	9.2.1 General Speech Capture Scenario for Multichannel Speech Enhancement
	9.2.2 Time-Frequency Domain Representation of Signals
	9.2.3 Generative Model of Desired Signals
	9.2.4 Generative Model of Interference

	9.3 Speech Enhancement Based on Maximum Likelihood Spectral Estimation (MLSE)
	9.3.1 Maximum Likelihood Spectral Estimation (MLSE)
	9.3.2 Processing Flow of MLSE Based Speech Enhancement

	9.4 Speech Enhancement Based on Maximum A Posteriori Spectral Estimation (MAPSE)
	9.4.1 Maximum A Posteriori Spectral Estimation (MAPSE)
	9.4.2 Log-Spectral Prior of Speech
	9.4.3 Expectation Maximization (EM) Algorithm
	9.4.4 Update of n,f Based on Newton–Raphson Method
	9.4.5 Processing Flow

	9.5 Application to Blind Source Separation (BSS)
	9.5.1 MLSE for BSS (ML-BSS)
	9.5.1.1 Generative Models for ML-BSS
	9.5.1.2 MLSE Based on EM Algorithm
	9.5.1.3 Processing Flow of ML-BSS Based on EM Algorithm

	9.5.2 MAPSE for BSS (MAP-BSS)
	9.5.2.1 Generative Models for MAP-BSS
	9.5.2.2 MAPSE Based on EM Algorithm
	9.5.2.3 Processing Flow of MAP-BSS Based on EM Algorithm
	9.5.2.4 Initialization of  and  (or )


	9.6 Experiments
	9.6.1 Evaluation 1 with Aurora-2 Speech Database
	9.6.2 Evaluation 2 with SiSEC Database

	9.7 Concluding Remarks
	References

	10 Modulation Processing for Speech Enhancement
	10.1 Introduction
	10.2 Methods
	10.2.1 Modulation AMS-Based Framework
	10.2.2 Modulation Spectral Subtraction
	10.2.3 MMSE Modulation Magnitude Estimation
	10.2.3.1 MMSE Modulation Magnitude Estimation with SPU
	10.2.3.2 MMSE Log-Modulation Magnitude Estimation
	10.2.3.3 MME Parameters


	10.3 Speech Quality Assessment
	10.4 Evaluation of Short-Time Modulation-Domain Based Methods with Respect to Quality
	10.5 Conclusion
	References



